News

ERC funding to Assistant Professor Junhe Lian to explore new materials via advanced manufacturing

Assistant professor Junhe Lian's goal is to develop an efficient, digital, and ecologically sustainable method for developing new materials and advanced manufacturing technologies with the help of the ERC Starting Grant.
Professori Junhe Lian
Professor Junhe Lian

Industrial 3D printing, i.e. the additive manufacturing method, is an economical option when it comes to manufacturing a complex part. On the other hand, the material properties of a 3D printed product are not necessarily of uniform performance, retarding certain implementations of its outcomes, yet enabling active leverage of the material properties with unparalleled flexibility for multi-functional design. 

Professor Junhe Lian's research project HIGMAM – Hierarchical gradient metals by additive manufacturing – aims high: the goal of the five-year project is to develop a fundamental understanding of the interplay between materials and manufacturing for this emerging field and eventually to offer an efficient, digital and ecologically sustainable way to develop new materials and manufacturing techniques. 

’We discovered by chance in our research group that additive manufacturing can produce completely new microstructures in the material, which in addition to simple microstructure features, also has hierarchical gradient structures of different sizes and even lattice distortions. It preserves the material's strength properties but makes the materials tougher compared to traditional microstructures,’ says Junhe Lian.

Over the past decade, research has shown that organic-looking shapes can maintain the strength and toughness of engineering materials without compromise. ’Currently, in the engineering domain, we can only develop materials with limited design space and rule of physics,’ the professor adds. 

’With the help of the additive manufacturing method and eventually more general manufacturing methods, we can systematically study the possibilities and limits of the new microstructures. Through complex research combining multiple scales and the laws of physics, we aim to develop a systematic approach to the design of the new microstructures. The research will delve into fundamental experimental research, multiscale characterization methods, multiphysics, and multi-scale numerical models, as well as the utilization of data science,’ promises Professor Lian.

’We have been studying the possibilities brought by the additive manufacturing method for a long time. With the help of Junhe Lian's excellent analytical modeling skills, we can expand the research to a whole new level,’ says Jouni Partanen, Professor of Advanced Production Methods at the Department of Mechanical Engineering.

Junhe Lian

Junhe Lian

Assistant Professor
  • Published:
  • Updated:

Read more news

White A! logo standing on the ground with A-bloc and Väre in the background.
Research & Art, University Published:
Nine large blocks of ice formed an art installation at Kansalaistori square in Helsinki 2021
Cooperation, Research & Art, Studies, University Published:

Aalto ARTS Summer School explores the significance of water through the lens of art

The theme of School of Arts, Design and Architecture’s Summer School this year is water, and its significance is explored in a multidisciplinary way through the perspectives of art, film and digital.
tekoälyohjelma käynnistyy
Press releases, Research & Art Published:

Just believing that an AI is helping boosts your performance

People perform better if they think they have an AI assistant – even when they’ve been told it’s unreliable and won’t help them
Researchers in front of Dipoli in a snowy landscape in Otaniemi
Cooperation, Research & Art Published:

Preserving intangible cultural heritage through immersive XR experiences

Aalto University’s Department of Art and Media is coordinating a European wide project on preserving intangible cultural heritage and using it to address societal challenges with the help of immersive XR environments.