News

ERC funding to Assistant Professor Junhe Lian to explore new materials via advanced manufacturing

Assistant professor Junhe Lian's goal is to develop an efficient, digital, and ecologically sustainable method for developing new materials and advanced manufacturing technologies with the help of the ERC Starting Grant.
Professori Junhe Lian
Professor Junhe Lian

Industrial 3D printing, i.e. the additive manufacturing method, is an economical option when it comes to manufacturing a complex part. On the other hand, the material properties of a 3D printed product are not necessarily of uniform performance, retarding certain implementations of its outcomes, yet enabling active leverage of the material properties with unparalleled flexibility for multi-functional design. 

Professor Junhe Lian's research project HIGMAM – Hierarchical gradient metals by additive manufacturing – aims high: the goal of the five-year project is to develop a fundamental understanding of the interplay between materials and manufacturing for this emerging field and eventually to offer an efficient, digital and ecologically sustainable way to develop new materials and manufacturing techniques. 

’We discovered by chance in our research group that additive manufacturing can produce completely new microstructures in the material, which in addition to simple microstructure features, also has hierarchical gradient structures of different sizes and even lattice distortions. It preserves the material's strength properties but makes the materials tougher compared to traditional microstructures,’ says Junhe Lian.

Over the past decade, research has shown that organic-looking shapes can maintain the strength and toughness of engineering materials without compromise. ’Currently, in the engineering domain, we can only develop materials with limited design space and rule of physics,’ the professor adds. 

’With the help of the additive manufacturing method and eventually more general manufacturing methods, we can systematically study the possibilities and limits of the new microstructures. Through complex research combining multiple scales and the laws of physics, we aim to develop a systematic approach to the design of the new microstructures. The research will delve into fundamental experimental research, multiscale characterization methods, multiphysics, and multi-scale numerical models, as well as the utilization of data science,’ promises Professor Lian.

’We have been studying the possibilities brought by the additive manufacturing method for a long time. With the help of Junhe Lian's excellent analytical modeling skills, we can expand the research to a whole new level,’ says Jouni Partanen, Professor of Advanced Production Methods at the Department of Mechanical Engineering.

Junhe Lian

Junhe Lian

Assistant Professor
  • Published:
  • Updated:

Read more news

Nesteen polttoainejalostamon tankit Porvoossa
Cooperation, Research & Art Published:

Collaboration with Aalto brings significant financial benefits to Neste

As a result of the collaboration, Neste is now using digital tools in its fuel research alongside traditional testing.
Research & Art Published:

Testing virtual library card

Testing virtual library card
Professor Riikka Puurunen, Professor Patrick Rinke and IT Application Owner Lara Ejtehadian holding sunflowers and diplomas
Awards and Recognition, Campus, Research & Art Published:

Aalto Open Science Award ceremony brought together Aaltonians to discuss open science

Last week we gathered at A Grid to celebrate the awardees of the Aalto Open Science Award 2023 and discuss open science matters with the Aalto community.
Three female students studying
Research & Art Published:

Seed funding available to boost collaboration between Aalto, KU Leuven and University of Helsinki

Aalto University, KU Leuven and the University of Helsinki launch the 2nd exploratory seed funding call to explore research collaboration possibilities. The funding call is open until 10 September 2024.