News

Convenient wireless charging for home use

A uniform charging field makes this new transmitter ideal for consumer devices.
Transmitter
A new wireless charging technology opens the door to developing charging stations for consumer use. Photo: Aalto University

A new wireless charging system can charge devices placed anywhere within a ring around it. Existing systems transfer power in a specific direction or to a specific position. By providing a donut-shaped charging field, the new system offers a more convenient and reliable design for consumer use.

The main challenge in creating an omnidirectional charger has been that the strength of the charging field changes with location. This means that devices will charge inefficiently if they are in the wrong spot or aren’t oriented correctly. One approach to solve this is to create a charging field using several transmitter coils connected to several power sources, but this increases the complexity of the transmitter, making the system impractical. Other systems use feedback to properly orient the charging field, but the control systems are also complicated and expensive.

Researchers at Aalto University developed the new system to address these challenges. ‘We set out to create a simple, low-cost system using only a single power source,’ says Nam Ha-Van, the postdoctoral researcher who led the study.

The key to the new design is a cylindrical power coil. The wire at the top of the coil is wound in the opposite direction to the wire at the bottom of the coil, with a z-shaped bridge connecting them. Since the current flows through these windings in opposite directions, they produce complementary magnetic fields. One field flows out from the middle of the cylindrical coil, around the top winding, and back in through the top; the other flows out from the middle, around the bottom coil, and back in through the bottom.

This results in an even magnetic field around the middle of the charging coil. Receivers placed anywhere within that area charge efficiently, regardless of their position or orientation. ‘This was just a proof of concept,’ says Yining Liu, a doctoral candidate. ‘Now we can work to improve the efficiency – maybe to around 90% – and also the power.’

Based on simulations of the electromagnetic field around a consumer device, the researchers found that the level of exposure conformed to the requirements in safety regulations. However, further safety studies will be required before the technology can be used.

The new design complements recent work from the same research group which made it possible to transfer power to multiple, moving receivers in a charging area. The two technologies address different dimensions of the challenge of wireless charging: freedom of movement for industrial applications and free placement for consumer, tabletop devices.

The results have been published in IEEE Transactions on Industrial Electronics Journal
You can read the Open Access article by following this link.

More information:

Nam Ha-Van
Post-doctoral researcher
Aalto University
+358 50 5606 892
[email protected]

New power transfer technology provides unprecedented freedom for wireless charging

Devices can be charged regardless of their position or orientation and even on the go.

Read more
Aalto_testrobot.jpg
  • Published:
  • Updated:
Share
URL copied!

Read more news

Illustration image on a sunny day as the sun is setting, of Otakaari 2A, the lights in the building are lit and there are blurry images of people walking around. Grass and trees are green.
Campus, Press releases, University Published:

The new Marsio building is a showcase for research, teaching and impact at Aalto University

The name was selected through a contest, and it is a tribute to Aino Marsio-Aalto.
FinnFusion is a collaboration aiming to make fusion energy a reality. Photo: VTT.
Cooperation, Press releases, Research & Art Published:

Aalto Scientists Experiment with Helium Plasma to Help Pave Way for Fusion Energy

As part of FinnFusion, itself belonging to the EUROfusion consortium, Aalto scientists are experimenting with helium plasma to improve the future operations of Iter, an international fusion energy collaboration under construction in France.
Vehnänjyviä
Press releases Published:

Changes to animal feed could supply food for one billion people

Livestock and fish could be fed more agricultural by-products, freeing up food for people
A satellite image of Borneo and part of Malaysia covered by plumes of smoke from fires. The many fires are marked on the map as red dots.
Press releases Published:

New AI system predicts how to prevent wildfires

A machine learning model can evaluate the effectiveness of different management strategies