Coating bubbles with protein results in a highly stable contrast agent for medical use

Inspired by the bubbles bacteria create inside their cells, researchers developed a similar system by coating tiny gas vesicles with protein. The resulting bubbles are safe, highly stable, and function as contrast agent in medical applications. They could be used to diagnose, for example, cardiological issues, blood flow, and liver lesions.
Microscopic image of giant gas vesicles.

Bacteria produce gas vesicles, tiny thin-walled sacs filled with air or fluid, to help them float. This phenomenon has captured the attention of scientists who see potential for similar bubble-based designs in fields like medicine. A team of researchers at Aalto University’s Department of Applied Physics, led by Professor Robin Ras, have now used the same idea to create a new kind of contrast agent for use in medical applications such as ultrasound imaging. The research was recently published in the Proceedings of the National Academy of Sciences.

Natural materials and biological inspiration

The researchers created bubbles, referred to as giant gas vesicles, ranging from 10 to 100 micrometers in length, and measured their mechanical properties with a technique called micropipette aspiration. The  bubbles were coated with proteins called hydrophobins, which come from fungi. In addition, the team developed a theory to better understand the intricacies of compressibility and porosity in micro-scale physics.

‘By studying the mechanical properties of gas vesicles and developing our own micropipette technique, we were able to make the bubbles stable enough to withstand pressures like the ones you would find in the human body. The bubbles function as a contrast agent, and potentially could be used to diagnose things like cardiological issues, blood flow, and liver lesions with ultrasound in the future,’ says Doctoral Researcher Hedar Al-Terke.

‘We have significantly extended the theoretical framework of the pipette aspiration technique. It can now be used to fully characterize the mechanical properties, including porosity, of compressible gas-filled systems such as the hydrophobin-coated bubbles used in this study,’ says Research Fellow Grégory Beaune.

The research on giant gas vesicles is part of the team’s focus on researching the medical applications of micro-scale physics.

More information:


OtaNano is Finland's national research infrastructure for micro-, nano-, and quantum technologies

Read more
Kvanttibitit. Kuva: Jan Goetz.
  • Published:
  • Updated:

Read more news

Tutkimuslaitteistoa ja muovihansikkaisiin puetut kädet.
Press releases Published:

Groundbreaking culturing technique reveals crucial mechanics of cancer

A novel cell culturing technique reveals the hidden biomechanics of breast cancer
Kiia Einola hymyilee kameralle. Otaniemen amfiteatteri taustalla.
Cooperation Published:

Kiia Einola thinks that buildings should support the well-being

Kiia Einola's study journey at Aalto University extends from bachelor's studies all the way to doctoral research. Summer job during her master's studies sparked Kiia's interest in smart building research. She is currently working on her doctoral dissertation in smart building services engineering by collaborating with Helvar, a company specializing in electrical engineering.
Aalto University logo on black background
Research & Art Published:

Aalto computer scientists in CVPR 2024

Two papers from the Department of Computer Science were accepted to CVPR 2024.
Staff Training Week participants in front of the Dipoli building at Aalto University.
Cooperation, Press releases, University Published:

American and Finnish universities collaborate to drive SDG advancement and innovation

American and Finnish universities collaborate on SDG innovation during a week-long training event, fostering global sustainability solutions.