Uutiset

Tutkijat loivat tehokkaan varjoaineen kuorruttamalla kuplia proteiinilla

Bakteerien solunsisäisten kelluntakuplien inspiroimat tutkijat kehittivät samanlaisen tekniikan pienten kaasuvesikkelien kuorruttamiseen sienistä saatavalla proteiinilla. Lopputuloksena syntyvät kuplat ovat turvallisia ja erittäin stabiileja, minkä ansiosta niitä voidaan käyttää esimerkiksi ultraäänitutkimuksen varjoaineena.
Microscopic image of giant gas vesicles.

Bakteerit käyttävät pieniä vesikkelejä eli ohutseinäisiä kuplia kelluakseen vedessä. Kyseinen ilmiö on alkanut kiinnostaa tutkijoita viime vuosina, ja kuplamaisia rakenteita tutkitaan etenkin niiden lääketieteellisten sovellusten näkökulmasta. Aalto-yliopiston teknillisen fysiikan laitoksen tutkijat ovat professori Robin Rasin johdolla luoneet uudenlaisen varjoaineen esimerkiksi ultraäänitutkimusta varten. Tutkimus julkaistiin hiljattain Proceedings of the National Academy of Sciences -lehdessä.

Materiaaleja luonnosta ja inspiraatiota biologiasta

Tutkijat loivat jättimäisiksi kaasuvesikkeleiksi kutsuttuja kuplia, jotka olivat halkaisijaltaan 10-100 mikrometriä pitkiä. Sitten he selvittivät kuplien mekaaniset ominaisuudet mikropipettiaspiraatioksi kutsutulla tekniikalla. Aspiraation yhdessä kuplien ympärille asetettiin hydrofobiini-nimisestä sienistä saatavasta proteiinista muodostettu ohut kerros.

“Tutkimalla kaasuvesikkelien mekaanisia ominaisuuksia ja kehittämällä oman mikropipettitekniikkamme pystyimme tekemään kuplista niin vahvoja, että ne kestävät samanlaista painetta kuin mitä löytyy ihmisen verenkierrosta. Näin olen kuplat voivat toimia esimerkiksi varjoaineena, ja tulevaisuudessa niitä voisi käyttää vaikkapa sydän- ja verenkierto-ongelmien tai maksaleesioiden diagnosoimiseen”, sanoo väitöskirjatutkija Hedar Al-Terke.

“Olemme jatkokehittäneet olemassa olevaa mikropipettitekniikan teoriaa huomattavasti tämän tutkimuksen myötä. Nyt sillä voi kuvata kuplien mekaanisia ominaisuuksia kokonaisvaltaisesti, kuten teimme näiden hydrofobiinilla kuorrutettujen kuplien kanssa”, sanoo akatemiatutkija Grégory Beaune.

Jättimäisten kaasuvesikkelien tutkimus on osa tutkimusryhmän kiinnostusta selvittää mikroskooppisen fysiikan lääketieteellisiä sovellutuksia.

Lisätietoja (englanniksi):

OtaNano

Otaniemen mikro- ja nanoteknologioiden infrastruktuuri OtaNano on kansallinen tutkimusinfrastruktuuri kilpailukykyisen tutkimuksen harjoittamiseen nanotieteiden ja -teknologian sekä kvanttiteknologioiden alalla.

Read more
Aalto yliopisto piisirulla
  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Viima-rakennuksen pääsisäänkäynti
Tutkimus ja taide Julkaistu:

Tulevaisuuden rakennukset ovat sekä energian tuottajia että käyttäjiä

Aalto-yliopistossa kehitetty uusi innovatiivinen rakenne parantaa levylämmönvaihtimen tehokkuutta jopa 20 prosenttia. Lämpöpumppuun kytkettynä sillä on lukuisia käyttökohteita aina kotien käyttöveden lämmityksestä maalämpölaitoksiin ja rakennusten ilmanvaihtoon.
Construction worker looking straight to camera
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Jopa 80 prosenttia rakennustyömailla tehtävästä työstä on tehotonta – jatkuvat keskeytykset vaikuttavat myös turvallisuuteen

Valtaosa rakennustyömailla tehtävistä töistä ei suoraan vaikuta työn varsinaiseen edistymiseen. Tuore väitöstutkimus löysi kuitenkin helpon keinon parantaa rakentamisen tuottavuutta ja samalla myös hyvinvointia: työntekijöiden toiminnan seuranta.
Ylös vievät betoniset portaat, vasemmalla puolelle seinällä taideteos
Kampus, Tutkimus ja taide, Yliopisto Julkaistu:
Tapani Vuorinen in a black suit, facing camera in front of large windows.
Palkinnot ja tunnustukset, Yhteistyö, Tutkimus ja taide Julkaistu:

Aalto-professori Tapani Vuorinen: “Vain yhteistyön avulla voimme saavuttaa vaikuttavia tuloksia”

Aalto-yliopiston kemian tekniikan korkeakoulun puunjalostuksen kemian professori Tapani Vuorinen nimitettiin lukuvuoden avajaisissa 3. syyskuuta Aalto-professoriksi.