News

Building miniature optical antennas using DNA as a guide

A new fabrication technique combines programmable DNA origami shapes and conventional lithography methods to create metallic nanoantennas and chiral shapes for diverse applications.

DNA assisted lithography: bowtie-shaped DNA origami is transformed into a metallic nanostructure. Video: M. Kostiainen and V. Linko

Research groups from University of Jyväskylä and Aalto University (Finland) together with researchers from California Institute of Technology (Caltech, USA) and Aarhus University (iNANO Center, Denmark) have reported a new highly parallel technique to fabricate precise metallic nanostructures with designed plasmonic properties by means of different self-assembled DNA origami shapes. The so-called DALI (DNA-assisted lithography) method has been published in the latest issue of Science Advances.

“We can build virtually any nanoscale shape using a DNA origami technique, and now we have shown how to use these accurate shapes as “stencils” to create millions of fully metallic nanostructures with 10 nm feature sizes in one go”, explains Adjunct Professor Veikko Linko from Aalto University.

The trick in the DALI method is that when the DNA structures are deposited on a chip coated with silicon, silicon oxide can be selectively grown only on the bare areas of the substrate.

“By controlling this process, we can create origami-shaped openings on the grown silicon oxide layer, and this layer can be used as a mask for the following lithography steps. Finally, we evaporate metal through these openings and create metallic structures having the same shape and size as the original DNA origami on a transparent substrate, such as sapphire”, Boxuan Shen from the Nanoscience Center of University of Jyväskylä describes the method.

The tiny metallic features cover the whole transparent substrate, and therefore these surfaces have intriguing optical properties. The small dimensions of the structures – in the range of ten nanometers – allow further tuning of these properties at the visible wavelength range.

“Actually, we have demonstrated here a structure that we believe is the world’s smallest entirely metallic bowtie-shaped antenna. This extremely small size extends the operating range of optical features from infrared to visible”, states Adjunct Professor Jussi Toppari from Molecular Electronics and Plasmonics group at University of Jyväskylä.

These antennas can find use in dozens of optical and plasmonic applications, such as surface enhanced Raman spectroscopy, biosensing or fluorescence enhancement. Moreover, the researchers demonstrated that the surfaces can be used as polarizers by fabricating chiral structures using DALI.

 “The DALI method is highly parallel, and it could further enable cheap wafer-scale production of surfaces as it does not rely on costly patterning methods. It is also equipped for the future studies to provide bioinspired surfaces and metamaterials if the customized origami structures can be arranged on the substrate before metallization”, envisions Professor Mauri Kostiainen from the Biohybrid Materials Group at Aalto University.

Article: “Plasmonic nanostructures through DNA-assisted lithographyScience Advances, volume 4, issue 2, eaap 8978 (February 2, 2018)
Link to the article
 

More information:

Adjunct Professor Veikko Linko
Biohybrid Materials Group, Aalto University School of Chemical Engineering, Finland
tel. +358 45 673 9997
[email protected]

Boxuan Shen
Molecular Electronics and Plasmonics Group, Department of Physics, Nanoscience Center, University of Jyväskylä, and Biohybrid Materials Group, Aalto University School of Chemical Engineering, Finland
tel. +358 44 299 6182
[email protected]

Professor Mauri Kostiainen
Leader of the Biohybrid Materials Group, Aalto University School of Chemical Engineering, and HYBER Centre of Excellence, Department of Applied Physics, Aalto University School of Science, Finland
tel. +358 50 362 7070
[email protected]

Adjunct Professor / Senior Lecturer Jussi Toppari, Leader of the Molecular Electronics and Plasmonics Group, Department of Physics, Nanoscience Center, University of Jyväskylä, Finland
tel. +358 40 8054123
[email protected]

The research has been funded by Academy of Finland, Jane and Aatos Erkko Foundation, the Finnish Cultural Foundation, the Finnish Academy of Science and Letters, the Emil Aaltonen Foundation and the US Office of Naval Research Award.

  • Published:
  • Updated:

Read more news

Vidha Saumya's artwork with grotesque human figures
Research & Art Published:

Aalto ARTS alum Vidha Samya’s artwork featured at the Venice Biennale 2024

The Pavilion of Finland presents ‘The pleasures we choose’ at the 60th International Art Exhibition – La Biennale di Venezia until 24 November 2024.
Metallikuutio, jota kädet koskettaa
Research & Art Published:

IoT Forge donates EUR 1 million to the School of Engineering

The donation will be used for research and education on the Industrial Internet and digital twins.
Event information on a yellow to coral gradient background with yellow bubbles and a photo of a colorful event space.
Awards and Recognition, Campus, Research & Art Published:

Join us for the first Aalto Open Science Award Ceremony

All Aaltonians are welcome – no registration required!
A man with glasses looks at the camera, with summer nature in the background
Research & Art, University Published:

Donor story - Yrjö Sotamaa: ‘Supporting the university is about building our own future’

Professor Emeritus is still an active design influencer both at home and internationally. He is now also a monthly donor to School of Arts, Design and Architecture.