News

Building miniature optical antennas using DNA as a guide

A new fabrication technique combines programmable DNA origami shapes and conventional lithography methods to create metallic nanoantennas and chiral shapes for diverse applications.

DNA assisted lithography: bowtie-shaped DNA origami is transformed into a metallic nanostructure. Video: M. Kostiainen and V. Linko

Research groups from University of Jyväskylä and Aalto University (Finland) together with researchers from California Institute of Technology (Caltech, USA) and Aarhus University (iNANO Center, Denmark) have reported a new highly parallel technique to fabricate precise metallic nanostructures with designed plasmonic properties by means of different self-assembled DNA origami shapes. The so-called DALI (DNA-assisted lithography) method has been published in the latest issue of Science Advances.

“We can build virtually any nanoscale shape using a DNA origami technique, and now we have shown how to use these accurate shapes as “stencils” to create millions of fully metallic nanostructures with 10 nm feature sizes in one go”, explains Adjunct Professor Veikko Linko from Aalto University.

The trick in the DALI method is that when the DNA structures are deposited on a chip coated with silicon, silicon oxide can be selectively grown only on the bare areas of the substrate.

“By controlling this process, we can create origami-shaped openings on the grown silicon oxide layer, and this layer can be used as a mask for the following lithography steps. Finally, we evaporate metal through these openings and create metallic structures having the same shape and size as the original DNA origami on a transparent substrate, such as sapphire”, Boxuan Shen from the Nanoscience Center of University of Jyväskylä describes the method.

The tiny metallic features cover the whole transparent substrate, and therefore these surfaces have intriguing optical properties. The small dimensions of the structures – in the range of ten nanometers – allow further tuning of these properties at the visible wavelength range.

“Actually, we have demonstrated here a structure that we believe is the world’s smallest entirely metallic bowtie-shaped antenna. This extremely small size extends the operating range of optical features from infrared to visible”, states Adjunct Professor Jussi Toppari from Molecular Electronics and Plasmonics group at University of Jyväskylä.

These antennas can find use in dozens of optical and plasmonic applications, such as surface enhanced Raman spectroscopy, biosensing or fluorescence enhancement. Moreover, the researchers demonstrated that the surfaces can be used as polarizers by fabricating chiral structures using DALI.

 “The DALI method is highly parallel, and it could further enable cheap wafer-scale production of surfaces as it does not rely on costly patterning methods. It is also equipped for the future studies to provide bioinspired surfaces and metamaterials if the customized origami structures can be arranged on the substrate before metallization”, envisions Professor Mauri Kostiainen from the Biohybrid Materials Group at Aalto University.

Article: “Plasmonic nanostructures through DNA-assisted lithographyScience Advances, volume 4, issue 2, eaap 8978 (February 2, 2018)
Link to the article
 

More information:

Adjunct Professor Veikko Linko
Biohybrid Materials Group, Aalto University School of Chemical Engineering, Finland
tel. +358 45 673 9997
[email protected]

Boxuan Shen
Molecular Electronics and Plasmonics Group, Department of Physics, Nanoscience Center, University of Jyväskylä, and Biohybrid Materials Group, Aalto University School of Chemical Engineering, Finland
tel. +358 44 299 6182
[email protected]

Professor Mauri Kostiainen
Leader of the Biohybrid Materials Group, Aalto University School of Chemical Engineering, and HYBER Centre of Excellence, Department of Applied Physics, Aalto University School of Science, Finland
tel. +358 50 362 7070
[email protected]

Adjunct Professor / Senior Lecturer Jussi Toppari, Leader of the Molecular Electronics and Plasmonics Group, Department of Physics, Nanoscience Center, University of Jyväskylä, Finland
tel. +358 40 8054123
[email protected]

The research has been funded by Academy of Finland, Jane and Aatos Erkko Foundation, the Finnish Cultural Foundation, the Finnish Academy of Science and Letters, the Emil Aaltonen Foundation and the US Office of Naval Research Award.

  • Published:
  • Updated:
Share
URL copied!

Read more news

Sustainability day
Research & Art, University Published:

Sustainability Science Days 2022: Call for Abstracts

Sustainability Science Days 2022:Call for Abstracts
Device
Research & Art Published:

Experiment with turnstiles of single electrons shows way towards new power standard

Researchers at Aalto University propose method of transducing frequency to power
Päivi Törmä ja Sebastiaan van Dijken
Press releases, Research & Art Published:

Guiding spin waves with light could lead to faster and much more energy efficient computing

Major new research project at Aalto University aims to develop new type of computing device that eliminates massive amounts of waste heat produced by current devices
The picture shows the School of Business in winter time and during sunset. The photo was taken by Mikko Raskinen from Aalto University.
Research & Art Published:

Climate change is serious business

According to Senior University Lecturer Leena Lankoski, there are both compelling sustainability reasons and compelling business reasons for companies to urgently address their environmental impact.