Uutiset

Optisia miniatyyriantenneja DNA:n avulla

Tutkijat kehittivät uuden massatuotantoon soveltuvan valmistustekniikan pienille ja muodoiltaan erittäin tarkoille metallisille nanorakenteille.

DNA-avusteinen litografia (DALI): rusettimaisen DNA-origamin muodosta voidaan luoda metallinen nanorakenne. Video: M. Kostiainen ja V. Linko

Jyväskylän yliopiston ja Aalto-yliopiston tutkimusryhmät yhdessä California Institute of Technologyn (Caltech, Yhdysvallat) ja Aarhusin yliopiston (iNANO Center, Tanska) tutkijoiden kanssa ovat kehittäneet uuden massatuotantoon soveltuvan valmistustekniikan pienille ja muodoiltaan erittäin tarkoille metallisille nanorakenteille. Näillä nanopartikkeleilla on tarkoin räätälöidyt plasmoniset ominaisuudet, ja ne muodostetaan itsejärjestyvien DNA-origamirakenteiden avulla. DALI-menetelmäksi (DALI = DNA-avusteinen litografia) kutsuttu tekniikka on julkaistu Science Advances –lehden viimeisimmässä numerossa.

“Voimme valmistaa periaatteessa minkä tahansa muodon nanoskaalassa DNA-origamitekniikkaa käyttäen, ja nyt olemme onnistuneet osoittamaan kuinka näitä tarkkoja muotoja voidaan edelleen käyttää ikään kuin sapluunoina miljoonien metallisten nanorakenteiden valmistamiseen yhdellä kertaa. Samalla voidaan saavuttaa jopa alle 10 nanometrin resoluutio”, valottaa dosentti Veikko Linko Aalto-yliopistosta.

DALI-menetelmän salaisuus on selektiivinen oksidikerroksen kasvatus piillä päällystetylle alustalle, jolle DNA-rakenteet on asemoitu; piidioksidi kasvaa vain piin mutta ei juurikaan DNA-origamien päälle.

“Kontrolloimalla kasvatusprosessia voimme valmistaa origaminmuotoisia aukkoja piidioksidiin ja tätä kerrosta voimme sitten käyttää maskina myöhemmissä litografisissa valmistusvaiheissa. Lopulta höyrystämme metallia näiden aukkojen läpi ja voimme siten luoda metallirakenteita läpinäkyvälle pinnalle kuten esimerkiksi safiirille. Metallirakenteilla on näin ollen myös sama muoto ja koko kuin pinnalle asemoiduilla DNA-origameilla”, kuvailee valmistusprosessia Boxuan Shen Jyväskylän yliopiston Nanoscience Centeristä.

Näin valmistetut pienet metalliset rakenteet voivat peittää hyvinkin laajan läpinäkyvän substraatin, ja niinpä kyseisille pinnoille saadaankin aikaan mielenkiintoisia optisia ominaisuuksia. Rakenteiden mitat, jotka ovat noin kymmenen nanometrin skaalassa, mahdollistavat optisten ominaisuuksien muokkaamisen näkyvän valon aallonpituusalueella.

“Meidän käsittääksemme olemme luoneet maailman pienimmän rusetinmuotoisen täysin metallisen nanoantennin. Tämä erittäin pieni koko mahdollistaa monien tärkeiden ominaisuuksien hyödyntämisen näkyvän valon aallonpituuksilla, kun ennen se on ollut mahdollista vain infrapuna-alueella”, kertoo dosentti Jussi Toppari Jyväskylän yliopistosta, Molekyylielektroniikan ja -plasmoniikan tutkimusryhmästä.

Näitä antenneja voidaan hyödyntää monissa plasmoniikan sovelluksissa ja optiikassa, kuten esimerkiksi pintavahvistetussa Raman-spektroskopiassa, biomolekyylien havainnoinnissa ja molekyylien fluoresenssin vahvistamisessa. Tutkijat osoittivat myös, että pinnoista voi tehdä eräänlaisia polarisaattoreita valmistamalla kiraalisia nanorakenteita DALI-menetelmää käyttäen.

 “DALI voi hyvinkin mahdollistaa edullisen optisten pintojen massatuotannon, koska siinä ei tarvita kalliita ja hitaita valmistustekniikoita. Menetelmää voisi suoraan hyödyntää erilaisten metamateriaalipintojen valmistuksessa, kunhan DNA-origamit saadaan ensin järjestettyä haluttuun muotoon pinnan päällä”, visioi professori Mauri Kostiainen Aalto-yliopistosta, Biohybridimateriaalien tutkimusryhmästä.

Plasmonic nanostructures through DNA-assisted lithographyScience Advances, vol. 4, iss. 2, eaap 8978 (2. helmikuuta 2018).
Linkki artikkeliin

Lisätietoja:

Dosentti Veikko Linko
Biohybrid Materials Group, Aalto-yliopiston kemian tekniikan korkeakoulu
p.  045 673 9997
[email protected]

Boxuan Shen
Nanoscience Center, Jyväskylän yliopisto & Biohybrid Materials Group, Aalto-yliopiston kemian tekniikan korkeakoulu
p. 044 299 6182
[email protected]

Professori Mauri Kostiainen
Biohybrid Materials Group, Aalto-yliopiston kemian tekniikan korkeakoulu & Suomen Akatemian Biosynteettisten hybridimateriaalien molekyylimuokkauksen huippuyksikö HYBER
p. 050 362 7070
[email protected]

Dosentti / Yliopistonlehtori Jussi Toppari
Nanoscience Center, Jyväskylän yliopisto
p. 040 8054123
[email protected]

Tutkimusta rahoittivat Suomen Akatemia, Jane ja Aatos Erkon säätiö, Suomen kulttuurirahasto, Suomalainen tiedeakatemia (Väisälä), Emil Aaltosen säätiö ja the US Office of Naval Research Award.

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lisää tästä aiheesta

Luonnoskuva valokuiduista. Kuva: Ville Hynninen and Nonappa.
Tutkimus ja taide Julkaistu:

Tutkijat kehittivät metyyliselluloosasta ympäristöystävällisen valokuidun

Tampereen yliopiston ja Aalto-yliopiston tutkijat ovat kehittäneet optisia kuituja metyyliselluloosasta, joka on yleisesti käytetty selluloosan johdannainen. Tutkimustulokset avaavat uusia mahdollisuuksia valokuitujen ympäristöystävälliseen valmistamiseen. Tulokset julkaistiin Small-tiedelehdessä.
Installation Talks, Matti Kummu
Tutkimus ja taide Julkaistu:

Professori Matti Kummu: Miten tuottaa riittävästi ruokaa kaikille ylittämättä maapallon kestokykyä?

'Eri puolilla maailmaa kestävä ruoantuotanto onnistuu erilaisin keinoin, mutta tarvitaan myös globaali U-käännös", hän muistuttaa.
Aalto University
Tutkimus ja taide Julkaistu:

Insinööritieteiden korkeakoulun uudet vakinaistetut professorit esittäytyvät

Seitsemän professoria esittelee videolla omaa alaansa ja tutkimustaan.
Professor Sand on the left, with one her simulations on the right
Nimitykset, Tutkimus ja taide Julkaistu:

Andrea Sand tutkii säteilyä ydinreaktoreissa ja ulkoavaruudessa

Aalto-yliopiston teknillisen fysiikan laitoksen professori Andrea Sand mallintaa säteilyn vaikutusta materiaaleihin ja kehittää uusia energialähteitä tulevaisuutta varten.