News

Building better infrared sensors

New innovation significantly boosts sensor responsivity
The new, more sensitive infrared sensor brings benefits to many different technologies. Photo: Aalto University / Xiaolong Liu
The new, more sensitive infrared sensor brings benefits to many different technologies. Photo: Aalto University / Xiaolong Liu

Detecting infrared light is critical in an enormous range of technologies, from remote controls to autofocus systems to self-driving cars and virtual reality headsets. That means there would be major benefits from improving the efficiency of infrared sensors, such as photodiodes.

Researchers at Aalto University have developed a new type of infrared photodiode that is 35% more responsive at 1.55 µm, the key wavelength for telecommunications, compared to other germanium-based components. Importantly, this new device can be manufactured using current production techniques, making it highly practical for adoption. 

‘It took us eight years from the idea to proof-of-concept,’ says Hele Savin, a professor at Aalto University. 

The basic idea is to make the photodiodes using germanium instead of indium gallium arsenide. Germanium photodiodes are cheaper and already fully compatible with the semiconductor manufacturing process – but so far, germanium photodiodes have performed poorly in terms of capturing infrared light.

Savin’s team managed to make germanium photodiodes that capture nearly all the infrared light that hits them.

‘The high performance was made possible by combining several novel approaches: eliminating optical losses using surface nanostructures and minimizing electrical losses in two different ways,’ explains Hanchen Liu, the doctoral researcher who built the proof-of-concept device.

The team’s tests showed that their proof-of-concept photodiode outperformed not only existing germanium photodiodes but also commercial indium gallium arsenide photodiodes in responsivity. The new technology captures infrared photons very efficiently and works well across a wide range of wavelengths. The new photodiodes can be readily fabricated by existing manufacturing facilities, and the researchers expect that they can be directly integrated into many technologies.

‘The timing couldn’t be better. So many fields nowadays rely on sensing infrared radiation that the technology has become part of our everyday lives,’ says Savin.

Savin and the rest of the team are keen to see how their technology will affect existing applications and to discover what new applications become possible with the improved sensitivity.

The study was published on 1st Jan 2025 in the journal Light: Science & Applications.
Link to the article: www.nature.com/articles/s41377-024-01670-4

  • Updated:
  • Published:
Share
URL copied!

Read more news

Three people having a discussion at a table with laptops. Text: Visiting Professorships at TU Graz, October 1, 2026 - January 31, 2027.
Cooperation, Research & Art, Studies, University Published:

Apply Now: Unite! Visiting Professorships at TU Graz

TU Graz, Austria, invites experienced postdoctoral researchers to apply for two fully funded visiting professorships. The deadline for expressions of interest is 20 February 2026, and the positions will begin on 1 October 2026.

A modern lobby with a large brown sectional sofa, colourful artwork, and a staircase. A '50' logo is on the back wall.
Press releases Published:

Hanaholmen’s 50th anniversary exhibition lives on online – making the history of Finnish–Swedish cooperation accessible worldwide

MeMo Institute at Aalto University has produced a virtual 3D version of the anniversary exhibition of Hanaholmen.
Research & Art Published:

Soil Laboratory Exhibition – Exploring the Dialogue Between Human and the Earth in Utsjoki

Soil Laboratory explores the relationship between humans and the earth as a living landscape through ceramic practices in Utsjoki.
Three people walking in winter next to a sign that says 'Aalto University' with snow-covered trees and buildings in the background.
Research & Art Published:

The Finnish Cultural Foundation awarded grants for science and art

A total of 15 individuals or groups from Aalto University received grants