News

Brain scans shine light on how we solve clues

Partnered with machine learning, brain scans reveal how people understand objects in our world
Merkitys / Safa Hovinen
Image Credit Merkitys/Safa Hovinen

What’s an s-shaped animal with scales and no legs?  What has big ears, a trunk and tusks? What goes ‘woof’ and chases cats? The brain’s ability to reconstruct facts – ‘a snake’, ‘an elephant’ and ‘a dog’ – from clues has been observed using brain scanning by researchers at Aalto university. Their study was published today in Nature Communications.

In the research, test subjects were given three clues to help them guess what familiar objects the clues described. In addition to well-known animals, the clues depicted vegetables, fruits, tools and vehicles. The familiar objects and concepts described in the clues were never presented directly to the test subjects.

The researchers at Aalto University demonstrated that brain activation patterns contained more information about the features of the concept than had been presented as clues. The researchers concluded that the brain uses environmental clues in an agile way to activate a whole range of the target concept’s properties that have been learned during life.

‘This is a very important skill in nature because it enables a quick response based on small amount of information. For example, we automatically avoid a wiggly thing on a rocky shore because we know that a snake may be poisonous,’ says Sasa Kivisaari, Postdoctoral Researcher at the Aalto University.

The study used a huge amount of internet-based material to map the meaningful features associated with different concepts. Machine learning was used to create a model that describes the relationship between these features and brain activation patterns. Based on the model, brain activation patterns could be used to accurately deduce which concept the test subject was thinking of. For example, the activation patterns could be used to infer whether the clues led the subject to think of an elephant or a dog.

4 Brains thinking about moose
Scans of the brains of four different people, all thinking about clues for moose. (Sasa L. Kivisaari)

Understanding our differences to detect memory disorders

The method can be used to address the question why people understand or perceive the same concept differently.

‘The organization of meanings in the brain differs from person to person and can also affect how easy or hard it is for them to understand each other,’ says Professor Riitta Salmelin.

The research may also play a role in detecting memory disorders.

‘Combining and understanding meaningful information seems to involve the same brain areas that are damaged in early Alzheimer's disease. Therefore, the method we use may also be applied to the early detection of memory disorders,’ says Kivisaari.

Professor Riitta Salmelin's research team studies the neural basis of processing of language and meaningful information at the Department of Neuroscience and Biomedical Engineering at Aalto University. The research has been supported by the Academy of Finland, the Aalto Brain Centre and the Sigrid Jusélius Foundation.

Further information:

Visualisation of the model used in the study: https://aaltoimaginglanguage.github.io/guess/

Sasa Kivisaari

Postdoctoral Researcher, Academy of Finland
Aalto University
sasa.kivisaari@aalto.fi
Tel: +358 50 432 2828

Riitta Salmelin
Professor
Aalto University
riitta.salmelin@aalto.fi
Tel: +358 50 344 2745

  • Updated:
  • Published:
Share
URL copied!

Read more news

The image shows the presence of dark matter in the same region of sky, created using data from NASA’s Webb telescope in 2026 (right) and from the Hubble Space Telescope in 2007 (left). Credit: NASA/STScI/A. Pagan
Press releases Published:

NASA Reveals New Details About Dark Matter’s Influence on the Universe

With the Webb telescope’s unprecedented sensitivity, scientists are learning more about dark matter’s influence on stars, galaxies, and even planets like Earth.
Text 'Doc+ initiative' with colourful explosion on black background. Slogan: Your skills. Your path. Your impact.
Research & Art, Studies Published:

Enhancing doctoral researchers’ work-life skills – Join the DOC+ events

Doctoral student or postdoc, have you been pondering about building a meaningful doctoral career? Or about the future of AI in research and working life? These events and learning opportunities are for you!
Two people presenting data on Nordic markets. One holds a microphone, the other gestures towards a screen.
Cooperation, Press releases, University Published:

Aalto University to host the INNOVA Europe Summit 2026 in Espoo

Aalto University to host the INNOVA Europe Summit 2026 in Espoo, bringing together Europe’s next generation of student entrepreneurs.
Silhouette of a person thinking, overlaid with colourful digital data and graphics on the right side.
Cooperation, Press releases Published:

Finnish AI Region Secures Second Term with Top Marks from EU

Finnish AI Region (FAIR) EDIH has been selected to continue operations for a second term with excellent ratings. European Union continuation funding enables service expansion from the beginning of 2026. Aalto University is one of 10 partners in FAIR.