News

Black silicon photodetector breaks the 100% efficiency limit

The efficiency was so high that at first the researchers had a hard time believing the result. Now Aalto University spin-off company ElFys Inc. already supplies the record detectors for several industry sectors.
valoanturi
UV-light triggers electron multiplication in nanostructures. Figure: Wisa Förbom

Aalto University researchers have developed a black silicon photodetector that has reached above 130% efficiency. Thus, for the first time, a single photovoltaic device has exceeded the 100% external quantum efficiency limit at UV. This result opens new avenues for improving efficiencies beyond the famous Shockley-Queisser limit.

'When we saw the results, we could hardly believe our eyes. Straight away we wanted to verify the results by independent measurements', says Prof. Hele Savin, head of the Electron Physics research group at Aalto University.  

The independent measurements were carried out by the German National Metrology Institute, Physikalisch-Technische Bundesanstalt (PTB), which is known to provide the most accurate and reliable measurement services in Europe.

Head of the PTB Laboratory of Detector Radiometry, Dr Lutz Werner comments, 'After seeing the results, I instantly realised that this is a significant breakthrough - and at the same time, a much-welcomed step forward for us metrologists dreaming of higher sensitivities'. 

The secret behind the breakthrough: Unique nanostructures

The external quantum efficiency of a device is 100% when one incoming photon generates one electron to the external circuit. 130% efficiency means that one incoming photon generates approximately 1.3 electrons.

The researchers found out that the origin of the exceptionally high external quantum efficiency lies in the charge-carrier multiplication process inside silicon nanostructures that is triggered by high-energy photons. The phenomenon has not been observed earlier in actual devices since the presence of electrical and optical losses has reduced the number of collected electrons. 

'We can collect all multiplicated charge carriers without a need for separate external biasing as our nanostructured device is free of recombination and reflection losses', Prof. Savin explains.  

In practice, the record efficiency means that the performance of any device that is utilising light detection can be drastically improved. Light detection is already used widely in our everyday life, for example, in cars, mobile phones, smartwatches and medical devices.

'Our detectors are gaining a lot of attraction at the moment, especially in biotechnology and industrial process monitoring', says Dr Mikko Juntunen, CEO of Aalto University spin-off company, Elfys Inc. They are already manufacturing the record detectors for commercial use.

The results leading to the record efficiency have been accepted for publication in Physical Review Letters with a title "Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130%". 

More information:

Professor Hele Savin, Aalto University
ph. 050 541 0156
hele.savin@aalto.fi

CEO Mikko Juntunen, ElFys Oy
ph. 040 860 9663
mikko.juntunen@elfys.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

Three people having a discussion at a table with laptops. Text: Visiting Professorships at TU Graz, October 1, 2026 - January 31, 2027.
Cooperation, Research & Art, Studies, University Published:

Apply Now: Unite! Visiting Professorships at TU Graz

TU Graz, Austria, invites experienced postdoctoral researchers to apply for two fully funded visiting professorships. The deadline for expressions of interest is 20 February 2026, and the positions will begin on 1 October 2026.

A modern lobby with a large brown sectional sofa, colourful artwork, and a staircase. A '50' logo is on the back wall.
Press releases Published:

Hanaholmen’s 50th anniversary exhibition lives on online – making the history of Finnish–Swedish cooperation accessible worldwide

MeMo Institute at Aalto University has produced a virtual 3D version of the anniversary exhibition of Hanaholmen.
A person stands on glowing red steps with text promoting Ignite program for summer 2026. 'Take your first step' is written.
Studies Published:

Stop applying for jobs and build your own startup instead at Ignite

Applications for the Ignite summer accelerator program 2026 are open. Apply by March 8.
Research & Art Published:

Soil Laboratory Exhibition – Exploring the Dialogue Between Human and the Earth in Utsjoki

Soil Laboratory explores the relationship between humans and the earth as a living landscape through ceramic practices in Utsjoki.