News

Are we at the limits of measuring water-repellent surfaces?

As we develop extremely liquid-repellent surfaces, the errors in existing measurement techniques are getting too large.
Water droplet on a surface
A water droplet resting on a highly repellent surface (Image credit Mika Latikka)

How liquids are repelled by a surface – a property called “wettability”– is important for engineers to develop aircraft that resist ice formation; for fashion designers developing outdoor gear that repels rain and dirt; and every possible field in between. Researchers developing whole new surface materials in the lab also need accurate measurement of wetting properties so they can compare how different surfaces behave. For over two centuries, the standard method for defining how the droplet and the surface interact has been by measuring the “contact angle” of the droplet. The contact angle is the angle between the edge of the droplet and the surface it lies upon. Research at Aalto University is now calling the effectiveness of this method into question, in a perspective article published 15 March in the journal Science.

The problem with the contact angle method – according to Professor Robin Ras – is that it depends on both the accuracy of camera used to image the droplet and a subjective decision by the scientist about where in the image the droplet meets the surface. As scientists and engineers develop increasingly water-repellent materials, our ability to measure how effective they are decreases because the errors in the measurement get substantially worse as the ability to repel water increases.

Where the measurement line is chosen alters the outcome of the measurement
How errors arise in the traditional method (image credit: Maja Vuckovac)

Professor Ras’s team has carefully quantified the errors that arise from contact angle measurements, and his group are developing alternative methods for measuring how water-repellent surfaces interact with droplets. Newer methods which measure the adhesion or friction forces between the surface and the droplets not only have lower errors, but allow quantification in physical terms that is more relevant to the engineers developing new materials.

“We encourage researchers to rethink the relevance of contact angles in hydrophobic surface characterization and propose force as the next-generation benchmark quantity” says Professor Ras.

By raising the awareness among the wider scientific community that better methods for measuring surface wettability are out there, Professor Ras and his team hope that others will be able to make further discoveries currently unobtainable using traditional measurement techniques.

Link to the full article: http://doi.org/10.1126/science.aav5388

For further details contact:

Professor Robin Ras
[email protected]
http://physics.aalto.fi/smw

 

  • Published:
  • Updated:
Share
URL copied!

Read more news

Image and photo by Aalto University, Giulnara Launonen. MMD logo by Aalto University, Mithila Mohan
Research & Art Published:

Multifunctional Materials Design: Highlights of 2022

Our group's milestones of the previous year
Nainen rannalla tuulisella säällä hymyilee, taustalla meri kuohuaa
Appointments, Research & Art Published:

Professor Ranja Hautamäki: ‘Diverse urban nature is key to increasing well-being and carbon sinks’

Professor of Landscape Architecture is tackling the issues of climate change mitigation and urban carbon sinks.
NASAn Curiosity-mönkijä kuvaama pölypyörre Marsin Gale-kraatterissa. Kuvankäsittely: Henrik Kahanpää. Alkuperäinen kuva: NASA / JPL-Caltech
Research & Art, Studies Published:

On Mars the weather varies dramatically, however the planet’s climate is not changing

The doctoral dissertation of Henrik Kahanpää also questions a prevailing perception related to dust devils on Mars. As a researcher, he hopes that humans would never go to Mars.
 Tutkimustyössä hyödynnetään Aalto-yliopiston radiokaiutonta huonetta Otaniemessä. Kuva: Aalto-yliopisto / Unto Rautio
Cooperation, Research & Art Published:

New doctoral programme focuses on the energy efficiency of radio waves

Nokia's donation to Aalto University will support research into new mobile communications systems, and particularly hardware development.