News

Are we at the limits of measuring water-repellent surfaces?

As we develop extremely liquid-repellent surfaces, the errors in existing measurement techniques are getting too large.
Water droplet on a surface
A water droplet resting on a highly repellent surface (Image credit Mika Latikka)

How liquids are repelled by a surface – a property called “wettability”– is important for engineers to develop aircraft that resist ice formation; for fashion designers developing outdoor gear that repels rain and dirt; and every possible field in between. Researchers developing whole new surface materials in the lab also need accurate measurement of wetting properties so they can compare how different surfaces behave. For over two centuries, the standard method for defining how the droplet and the surface interact has been by measuring the “contact angle” of the droplet. The contact angle is the angle between the edge of the droplet and the surface it lies upon. Research at Aalto University is now calling the effectiveness of this method into question, in a perspective article published 15 March in the journal Science.

The problem with the contact angle method – according to Professor Robin Ras – is that it depends on both the accuracy of camera used to image the droplet and a subjective decision by the scientist about where in the image the droplet meets the surface. As scientists and engineers develop increasingly water-repellent materials, our ability to measure how effective they are decreases because the errors in the measurement get substantially worse as the ability to repel water increases.

Where the measurement line is chosen alters the outcome of the measurement
How errors arise in the traditional method (image credit: Maja Vuckovac)

Professor Ras’s team has carefully quantified the errors that arise from contact angle measurements, and his group are developing alternative methods for measuring how water-repellent surfaces interact with droplets. Newer methods which measure the adhesion or friction forces between the surface and the droplets not only have lower errors, but allow quantification in physical terms that is more relevant to the engineers developing new materials.

“We encourage researchers to rethink the relevance of contact angles in hydrophobic surface characterization and propose force as the next-generation benchmark quantity” says Professor Ras.

By raising the awareness among the wider scientific community that better methods for measuring surface wettability are out there, Professor Ras and his team hope that others will be able to make further discoveries currently unobtainable using traditional measurement techniques.

Link to the full article: http://doi.org/10.1126/science.aav5388

For further details contact:

Professor Robin Ras
[email protected]
http://physics.aalto.fi/smw

 

  • Published:
  • Updated:
Share
URL copied!

Read more news

Leevi Ikäheimo's anatomical outfit (2020). Photo: Mika Kailes
Press releases Published:

They changed Finnish fashion in the 2020’s

”Intimacy” exhibition at Helsinki Designmuseum presents 40 designers and companies at the intersection of novel politicization and digital disruption of fashion.
Design Bits is Aalto's introductory online course to design for non-designers. Illustration: Paulo Dziobczenski
Press releases, Studies Published:

Open online design course launched for non-designers

Design Bits is an introduction course to help people everywhere become more creative problem-solvers
Ostoskeskus A Blanc ja Alvarinaukio
Campus, Press releases, University Published:

Shopping centre A Blanc celebrates opening on Otaniemi campus

Designed by Alvar Aalto, the building previously known as Otaniemi’s old shopping centre, has a new name after the renovation and opened in the middle of the Aalto University campus
Northern Dimension Newsflash 3/2021 is out
Press releases, Research & Art Published:

Northern Dimension Newsflash 3/2021 is out

Better visibility for the Northern Dimension