Itsestään puhdistuvia seiniä ja jäätymättömiä lentokoneen siipiä – voimasensori auttaa uusien vettähylkivien materiaalien kehittämisessä

Pisaran ja pinnan vuorovaikutusta on jo yli kahden vuosisadan ajan tarkasteltu pisaran ja pinnan välistä kontaktikulmaa mittaamalla. Tuoreessa julkaisussaan Aalto-yliopiston tutkijat kuitenkin kyseenalaistavat kontaktikulmamenetelmän toimivuuden erittäin vettähylkivillä eli superhydrofobisilla pinnoilla.
Kontaktikulmamenetelmässä pieni kontaktikulma tarkoittaa, että pisara leviää pinnalle eli pinta kastuu. Suuri kontaktikulma taas tarkoittaa, että pisara on muodoltaan pallomainen eli pinta hylkii nestettä. Mittauksen tulos riippuu pisaran kuvaamiseen käytetyn kameran tarkkuudesta sekä siitä, missä kohtaa pisara ja pinta mittaajan mielestä koskettavat toisiaan. Tätä ei ole aina helppo määrittää tarkasti.

”Kontaktikulmat toimivat hyvin tavallisilla pinnoilla, mutta superhydrofobisilla pinnoilla mittausvirheet kasvavat liian suuriksi. Tämä johtuu siitä, että kameroiden resoluutio ei yksinkertaisesti enää riitä kuvaamaan pinnan ja pisaran kontaktialuetta tarkasti. Myös optiset vääristymät tuottavat ongelmia”, kertoo tohtorikoulutettava Mika Latikka.
Superhydrofobisia pintoja voidaan käyttää esimerkiksi itsestään puhdistuvissa seinissä tai ikkunalaseissa, huurtumattomissa silmälaseissa tai estämään jään muodostumista lentokoneiden siipiin. Kastumisominaisuuksien tarkka mittaaminen on tärkeää esimerkiksi silloin, kun suunnitellaan uusia pintoja ja vertaillaan niiden ominaisuuksia.
”Nykyiset mittausmenetelmät rajoittavat vettä hylkivien pintojen kehittämistä. Tällä hetkellä kehitetään vedenhylkimisominaisuuksiltaan yhä parempia materiaaleja, mutta perinteiset mittausmenetelmät eivät ole pysyneet kehityksessä mukana”, Latikka sanoo.
Siinä missä kontaktikulma on pisaran ja pinnan vuorovaikutuksen epäsuora mittaustapa, vuorovaikutusta voidaan mitata suoraan voimasensorilla. Menetelmässä pisara kiinnitetään voimasensoriin, ja pisara viedään kosketuksiin pinnan kanssa.
”Voimasensori mittaa sitä voimaa, jolla pisara ja pinta haluavat pysyä yhdessä eli voimaa, jolla ne vastustavat eroamista toisistaan”, Latikka kertoo.
Aiemmin riittävän herkkiä ja samalla kestäviä voimasensoreita ei ole ollut helposti saatavilla. Nyt tilanne on muuttumassa, ja tulevaisuudessa myös liikkuvaan pisaraan vaikuttavia kitkavoimia voidaan mitata magneettikentillä ohjattujen pisaroiden oskillaatiota eli liikettä seuraamalla. Mitä nopeammin oskillaatio vaimenee, sitä suurempi on kitka pisaran ja pinnan välillä.
”Voimien mittaamiseen perustuvat menetelmät ovat paitsi tarkempia myös tarkoituksenmukaisempia uusien materiaalien kehittämisessä”, sanoo professori Robin Ras.
Lisätietoja:
Artikkeli: Improving surface-wetting characterization
Mika Latikka
Tohtorikoulutettava
Aalto-yliopisto
[email protected]
puh. 050 380 2093
Robin Ras
Professori
Aalto-yliopisto, teknillisen fysiikan laitos
Biosynteettisten hybridimateriaalien molekyylimuokkauksen huippuyksikkö
[email protected]
puh. 050 432 6633
Lue lisää uutisia

Suomen akatemia palkitsee Ville Vuorisen COVID-19 taudin leviämistä koskevasta tutkimuksesta
Ilma- ja nestevirtausten fysiikkaa tutkiva Ville Vuorinen palkitaan poikkeuksellisesta tieteellisestä rohkeudesta ja luovuudesta sekä toiminnasta tieteen yhteiskunnallisen vaikuttavuuden edistämiseksi.
Näkymiä avoimeen dataan: Aalto Research Data Uncovered
Marika Tervahartiala ja Kamyar Hasanzadeh astuivat lavalle kertomaan tutkimuksestaan geograafisen ja visuaalisen datan parissa avoimen datan näkökulmasta.
Kvanttitieteilijät onnistuivat mittaamaan mikroaaltosäteilyn tehon ennennäkemättömällä tarkkuudella
Tutkijat uskovat, että uusi laite voi mullistaa mikroaaltosäteilyn mittaamisen ja on huima harppaus kvanttiteknologialle.