News

AI is revolutionising health technology

Machine diagnosis may become the norm in the future.
Aalto University / Image recognition is one application that uses deep learning / photo: Mikko Raskinen

Doctors can look at X-ray images and analyse what they see. Thanks to their expertise, they can diagnose a patient’s health simply by looking at these images.

We are already at the stage where this type of expertise can be stored and automated. With a large number of already classified X-ray images, an artificial intelligence can be trained to diagnose diseases. Thanks to a significant scientific breakthrough called deep learning, there is no need to tell the AI what parts of an image led to the diagnosis; it can discover the diagnostic rules itself.   

AI to solve healthcare labour shortage?

“Healthcare is one sector that will see a significant change thanks to artificial intelligence. Work in this field has traditionally required expensive knowledge, but now part of that knowledge can be automated”, says Professor of Practice Leo Kärkkäinen.

He believes that medical diagnoses by machines will be commonplace in the future. Automating repetitive and time-consuming work can help free up expert resources for more demanding tasks in a sector that is plagued by labour shortage.

Kärkkäinen has participated in a research project for detecting subarachnoid haemorrhages. The arachnoid membrane separates the brain tissue from cavities in the brain. When a blood vessel in one of these cavities starts to leak, no typical neurological symptoms of a brain haemorrhage may appear, except for a severe headache. In most cases, patients are X-rayed, but there is not always a radiologist present to detect possible leaks in the images. This is where a diagnosis made by an artificial intelligence could save a patient’s life. 

“This is AI application at its best. An artificial intelligence does not necessarily do things better than a human, but it can work faster and regardless of the time of day, which is perhaps its greatest advantage”, says Kärkkäinen.

An artificial intelligence does not necessarily do things better than a human, but it can work faster and regardless of the time of day.

Leo Kärkkäinen

Self-learning neural networks

Deep learning – or neural networks – is a machine learning method inspired by how we believe that the human brain works. A neural network consists of a very large number of artificial nerves, or neurons, which specialise in performing simple tasks given to them or sent from other neurons. Data moves up through the network’s layers of neurons, as the system performs combinations of these simple tasks. Thus, each new layer of neurons is tasked with an increasingly complicated task.

Image recognition is one application that uses deep learning. While traditional machine learning methods require very complex programmatic rules for identifying objects in images, a deep learning system can – with a sufficiently large number of already classified images as input – automatically adjust its neutral network operation to improve detection accuracy. The system is therefore self-learning. The system can perform tasks that are increasingly complex as the amount and accuracy of the input data increases.

The university is collaborating with hospitals to get access to large amounts of classified data, such as X-ray images, in order to train deep learning systems properly.

“Aalto University is participating in several research projects where we collaborate with doctors to identify tools that could help healthcare professionals work faster and more effectively.”

  • Published:
  • Updated:
Share
URL copied!

Read more news

Woman touching a long-sleeved Marimekko Unikko shirt on display
Research & Art Published:

Lab-grown pigments and food by-products: The future of natural textile dyes

As the environmental impact of the fashion and textile industries becomes clearer, the demand and need for sustainable alternatives is growing. One international research group aims to replace toxic synthetic dyes with natural alternatives, ranging from plants to microbes to food waste.
Professori Monika Österberg.
Research & Art Published:

Professor Monika Österberg's team received funding for the development of bio-based packaging materials

The Finnish Research Impact Foundation funding given to Professor Monika Österberg's team will enable Aalto University and Kemira to explore the possibilities of developing fully bio-based packaging materials to reduce the use of plastics in the packaging industry.
designtalks_banner.jpg
Research & Art, University Published:

DesignTalks highlights the relevance of good design and how it benefits us all

Find all DesignTalks recordings here – they're available for everyone, offering an opportunity to easily explore the role and relevance of design in different contexts
people exploring the walk-in closet that provides solutions for a sustainable fashion and textiles future
Cooperation, Research & Art, University Published:

'Wardrobe of the future' – sustainable solutions for the fashion and textile industry

The exhibition is showcasing solutions from researchers and students on sustainable future for the fashion and textile industry.