Uutiset

Tekoäly mullistaa terveysteknologiaa

Tulevaisuudessa koneen tekemät diagnoosit voivat olla arkipäivää.
Aalto University / Image recognition is one application that uses deep learning / photo: Mikko Raskinen

Lääkäri katsoo potilaansa röntgenkuvaa ja analysoi näkemäänsä. Ammattitaitonsa ansiosta hän pystyy tekemään diagnoosin potilaan terveydentilasta tästä otettujen kuvien perusteella.

Jo nyt tällainen lääkärin tietotaito voidaan ottaa talteen ja automatisoida. Syöttämällä tekoälylle suuri määrä valmiiksi luokiteltuja röntgenkuvia, se voi oppia diagnosoimaan sairauksia. Merkittävän tieteellisen läpimurron, syväoppimisen, ansiosta tekoälylle ei tarvitse kertoa, mitä sellaista kuvissa näkyy, joka on johtanut tehtyyn diagnoosiin, vaan se pystyy löytämään säännöt diagnoosin tekemiseen itse.   

Tekoälystä ratkaisu terveydenhoidon työvoimapulaan?

”Terveydenhoito on yksi niistä aloista, joihin tekoäly tulee vaikuttamaan merkittävästi. Se on perinteisesti kallista ymmärrystä vaativa ala, mutta nyt osa tästä ymmärryksestä voidaan automatisoida”, työelämäprofessori Leo Kärkkäinen kertoo.

Hän uskoo, että tulevaisuudessa koneen tekemät lääketieteelliset diagnoosit ovat arkipäivää. Toistuvan ja aikaa vievän mekaanisen työn automatisoiminen voi vapauttaa terveydenhoidon ammattilaisten resursseja vaativampiin tehtäviin työvoimapulasta kärsivällä alalla.

Kärkkäinen on ollut mukana tutkimushankkeessa, joka liittyy lukinkalvon alaisen verenvuodon havaitsemiseen. Lukinkalvo erottaa aivokudoksen aivoissa sijaitsevista onkaloista. Jos jokin onkaloiden verisuonista alkaa vuotaa, aivoverenvuotoon tyypillisesti liittyviä neurologisia oireita ei aina – kovaa päänsärkyä lukuun ottamatta – ole havaittavissa. Useimmiten potilas kuvataan, mutta radiologi, joka pystyisi havaitsemaan vuodon kuvista, ei välttämättä ole paikalla. Tällaisissa tilanteissa tekoälyn tekemä diagnoosi voi pelastaa potilaan hengen. 

”Tämä on mielestäni tekoälyn soveltamista parhaimmillaan. Se ei välttämättä osaa tehdä asioita paremmin kuin ihminen, mutta se pystyy tekemään ne nopeammin, kellonajasta riippumatta, ja tämä on ehkä se kaikkein suurin etu”, Kärkkäinen sanoo.

Tekoäly ei välttämättä osaa tehdä asioita paremmin kuin ihminen, mutta se pystyy tekemään ne nopeammin, kellonajasta riippumatta.

Leo Kärkkäinen

Neuroverkko opettaa itseään

Syväoppiminen – josta käytetään myös nimeä neuroverkko – on koneoppimisen menetelmä, joka on saanut vaikutteita siitä, miten ihmisaivojen uskotaan toimivan. Neuroverkko koostuu valtavasta määrästä keinotekoisia hermoja eli neuroneita, jotka erikoistuvat ratkaisemaan niille syötettyjä tai muilta neuroneilta saatuja yksinkertaisia tehtäviä. Tieto siirtyy ylöspäin seuraaville neuronikerroksille, jotka voivat ratkaista yksinkertaisten ongelmien yhdistelmiä. Näin jokainen uusi kerros neuroneita käsittelee edellistä monimutkaisempaa ongelmaa.

Kuvantunnistus on yksi syväoppimista hyödyntävistä sovellusaloista. Siinä missä perinteiset koneoppimisen menetelmät vaativat erittäin monimutkaisia ohjelmallisia sääntöjä kuvassa näkyvien asioiden tunnistamiseksi, syväoppivaan järjestelmään syötetään suuri määrä valmiiksi luokiteltuja kuvia, jonka jälkeen se pystyy itse säätämään neuroverkon toimintaa tunnistustarkkuuden parantamiseksi. Se siis oppii itse. Mitä enemmän ja parempaa dataa järjestelmään syötetään, sitä monimutkaisimmista tehtävistä se pystyy suoriutumaan.

Yliopiston ja sairaaloiden tekemä yhteistyö mahdollistaa pääsyn muun muassa röntgenkuvien kaltaiseen suureen luokiteltuun aineistoon, jota syväoppiminen vaatii.

”Aalto-yliopisto on mukana tutkimushankkeissa, joiden tarkoituksena on yhdessä lääkäreiden kanssa löytää työkaluja, joilla auttaa ja nopeuttaa terveydenhuollon ammattilaisten työtä.”

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Future Digital Mobility Management
Tutkimus ja taide Julkaistu:

Liikutko autolla pk-seudulla? Tule testaamaan, miten autoilureiteistä saadaan sujuvampia ja turvallisempia.

Helsingissä toteutetaan syksyn aikana kansainvälinen Code the Streets -pilotti, jossa autoilijoille ehdotetaan vaihtoehtoisia ajoreittejä navigaattorilla. Haemme nyt navigointisovelluksen testaajia, joilla on käytössään Android-puhelin.
Kimchi and Chips
Tutkimus ja taide Julkaistu:

Taiteilijapuheenvuoro: Kimchi and Chips

Tervetuloa seuraamaan soulilaisen Kimchi and Chips -taidestudion taiteilijapuheenvuoroa!
CYBER_Aki-Pekka_Sinikoski010.jpg
Yhteistyö, Tutkimus ja taide Julkaistu:

Perustieteiden korkeakoulun tutkijoita mukana nyt yhteensä viidessä tutkimuksen huippuyksikössä

Suomen Akatemia on valinnut yhteensä 11 uutta huippuyksikköä. Perustieteiden korkeakoulun tutkijat ovat mukana ottamassa selvää keinotekoisesti älykkäistä materiaaleista, matematiikan viimeisimpien edistysaskeleiden sovelluksista sekä ilmakehän molekyyliprosesseísta.
A detail of spider silk material developed in Aalto University, image Fotoni Film & Communications
Tutkimus ja taide, Yliopisto Julkaistu:

Kaksi uutta huippuyksikköä Aalto-yliopistoon – yliopisto myös mukana kahdessa konsortiossa

Aalto-yliopiston johtamiksi huippuyksiköiksi valittiin Suurnopeuksiset sähkömekaaniset energianmuunnosjärjestelmät sekä Elävien toimintojen innoittamat hybridimateriaalit.