Aalto Scientists Experiment with Helium Plasma to Help Pave Way for Fusion Energy

Researchers at Aalto University take part in an international project to help make fusion energy a reality. A new wave of fusion energy experiments on the UK Atomic Energy Authority’s Joint European Torus (JET) experiment device started this month. EUROfusion, the European Consortium for the Development of Fusion Energy, has its researchers use the JET machine to conduct a series of tests using helium to help inform future operations at ITER, a fusion energy collaboration of 35 nations, currently under construction in Southern France.
FinnFusion is a collaboration aiming to make fusion energy a reality. Photo: VTT.

ITER is expected to start operations using helium and hydrogen test plasmas before commencing experiments with deuterium and tritium, the more efficient fuel used by JET to break the world record for sustained fusion energy at the end of 2021. ITER’s goal is to prove the feasibility of fusion as a large-scale and carbon-free source of energy.

As part of FinnFusion, a research collaboration belonging to EUROfusion, scientists at Aalto University also participate in the JET studies. Mathias Groth, a researcher at Aalto, describes the work done in Otaniemi:

”Scientists from the Fusion and Plasma Group at Aalto lead the investigations into the role of helium as the main fuel species in detaching plasma from the divertor target plates at the bottom of the experiment device. We employ comprehensive measurements and state-of-the-art computer simulations to isolate the role of hydrogenic molecules in the process of plasma detachment in hydrogenic plasmas by using helium plasmas. We also perform cutting-edge computer simulations to characterize heat-, particle-, and momentum transport in the cores of hydrogenic and helium plasma.”

Outside of Aalto, other EUROfusion researchers will study the behaviour of the plasmas as well as test the impact of helium on JET’s tungsten and beryllium wall to help ITER efficiently build up to full power operations once its construction finishes and operations begin in 2025.

More information

Mathias Groth

Mathias Groth

T304 Dept. Applied Physics
  • Published:
  • Updated:

Read more news

A man stands against a white background.
Awards and Recognition Published:

Broadband miniaturized spectrometer research receives QTF annual discovery award 2024

The clarity and compelling presentation of the research were one of the reasons why Doctoral Researcher Md Uddin earned the prize for the research paper, which was published in Nature Communications.
 Shankar Deka is an Assistant Professor at the Department of Electrical Engineering and Automation.
Research & Art Published:

Robotics needs safe behavior patterns

Robotics and autonomous systems are developing rapidly. Algorithms that withstand disturbances and uncertainties in the system model and environment are critical for development.
kuva puhelimesta ihmisen kädessä
Press releases Published:

Teaching a computer to type like a human

A new typing model simulates the typing process instead of just predicting words
Open-top chambers in a tundra environment.
Press releases Published:

Understanding climate warming impacts on carbon release from the tundra

Tundras could transform from carbon sinks into a carbon source, exacerbating the effects of climate change