News

A remote-controlled drone helps in designing future wireless networks

New technique provides an accurate 3D model, which improves the prediction of the propagation of radio waves at millimetre-wave frequencies.
pressrelease_semkinwww_en.jpg

By using both the aerial photographs taken by the drone and photogrammetry software, researchers were able to create highly detailed 3D models of urban environments. Photo: Vasilii Semkin / Aalto University

The development of mobile devices has set increasingly high requirements for wireless networks and the emission of radio frequencies. Researcher Vasilii Semkin together with a research group at Aalto University and Tampere University of Technology has recently tested in their research work how aerial photographs taken using a so-called drone could be used in designing radio links.

By using both the aerial photographs taken by the drone and photogrammetry software, they were able to create highly detailed 3D models of urban environments. These models can be used in designing radio links. Photogrammetry is a technique where 3D objects can be formed from two or more photographs.

‘The measurements and simulations we performed in urban environments show that highly accurate 3D models can be beneficial for network planning at millimetre-wave frequencies’, Semkin says.

Towards a more cost-efficient design process

The researchers compared the simple modelling technique that is currently popular to their photogrammetry-based modelling technique.

‘With the technique used by us, the resulting 3D model of the environment is much more detailed, and the technique also makes it possible to carry out the design process in a more cost-efficient way. It is then easier for designers to decide which objects in the environment to be taken into account, and where the base stations should be placed to get the optimum coverage’, Semkin explains.

In the future, it will be possible to utilise the technique in designing 5G wireless connections, among other things.

The article has been published on web IEEE Xplore Document and it can be read by clicking this link.
(DOI: 10.1109/TVT.2016.2617919)

Further information:
Researcher Vasilii Semkin
Aalto University
vasilii.semkin@aalto.fi
tel +358 45 8044 402

  • Updated:
  • Published:
Share
URL copied!

Read more news

Research & Art Published:

Changes to education information in ACRIS

We are updating how education information is managed in Aalto University's research information system, ACRIS. The old source data for education information will be removed to help eliminate potential duplicate entries.
Various piles of string on a dark surface.
Research & Art Published:

Lecturer Marja Rastas: “As a teacher, you never finish learning”

During her career, the lecturer in art education has witnessed changes in both the field of art education and in education itself.
A modern school building with a playground, surrounded by greenery under a partly cloudy sky.
Press releases, Research & Art Published:

Study: Wood is a more cost-effective building material than concrete when emissions are monetized

The costs of the wood-built school and sports hall in Myrskylä were compared to a reinforced concrete alternative — and wood proved clearly more economical when environmental impacts were assigned a monetary value.
Taantuvista pienkaupungeista on tullut maailmanlaajuinen ilmiö - tutkimushanke etsii keinoja palauttaa kuihtuvien kaupunkien elinvoimaisuutta. Kansainvälisen hankkeen esimerkkikohteena Suomessa on Puolangan kunta.
Cooperation, Research & Art Published:

Green factor for districts provides cities with a tool for adapting to climate change

Green factor for districts is a new tool that helps municipalities assess and strengthen green infrastructure in planning and makes the values of green infrastructure visible and comparable.