News

A new approach for detecting ultra-low-energy photons

A theoretical model shows how researchers could detect low-energy microwave photons emitted by superconducting qubits
A low energy photon emitted by a qubit can potentially be detected by measuring its energy with two thermometers simultaneously. The two signals are combined into a cross-correlation measurement with superior sensitivity. Picture: Bayan Karimi.

A low energy photon emitted by a qubit can potentially be detected by measuring its energy with two thermometers simultaneously. The two signals are combined into a cross-correlation measurement with superior sensitivity. Picture: Bayan Karimi.

Professor Jukka Pekola and Doctoral Candidate Bayan Karimi from Aalto University propose a new approach to measure the energy of single microwave photons. These low energy quanta are emitted by artificial quantum systems such as superconducting qubits. Detecting them continuously has been challenging but would be useful in quantum information processing and other quantum technologies.

A photon is produced when a superconducting qubit transits between states, radiating energy into its environment. The researchers capture the tiny energy of this photon by transferring it into heat. The new technique relies on splitting the energy of a photon across two independent heat baths and making measurements using two uncoupled detectors at once. This would significantly enhance the signal-to-noise ratio, making it easier to detect an absorption event and its energy.

 ‘In our proposed setup the energy of a qubit is large whereas its typical operating temperature is very low. This contrast opened an opportunity to solve the Schrödinger equation exactly for up to one million external oscillators forming the heat baths in the model describing this measurement,’ Pekola says.

Karimi adds that the ‘cross-correlation method can be used to measure extremely tiny temperature changes. It promises to detect energies several orders of magnitude smaller than in previously used methods.’

The researchers explain that many fundamental questions remain open but this would be the first time the energy of a photon is split into two different thermal detectors and observed. The team in the Pico group at Aalto University is currently carrying out experiments based on this proposal. ‘Completing the experiment is extremely challenging, but success would be a dream come true,’ says Karimi.

The researchers introduced the extremely sensitive calorimeter two years ago, and Physics World listed the calorimeter as one of the quantum highlights of 2020.

The research group is part of the Academy of Finland Centre of Excellence in Quantum Technology Finland (QTF), and InstituteQ, the Finnish Quantum Institute. Bayan Karimi worked in Marie Curie training network QuESTech, and currently her research continues at the University of Helsinki, in close collaboration with the Aalto research group.

Further information:

Article: Ultrasensitive calorimetric detection of single photons from qubit decay

Jukka Pekola
Professor
Aalto University
[email protected]
Tel. +358503442697

Bayan Karimi
Doctoral Candidate
Aalto University and the University of Helsinki
[email protected]

 

How sensitive can your quantum detector be?

A new device measures the tiniest energies in superconducting circuits, an essential step for quantum technology

Read more
An illustration showing a nano-strip of copper being bombarded by photons, with a thermometer measuring its heat
  • Published:
  • Updated:
Share
URL copied!

Read more news

Sähkötekniikan opiskelijat Venla, Iikka ja Leevi. Kuva: Filmbutik.
Studies Published:

Sähkötekniikan päivä event gathered participants from all over Finland - watch the recording!

In the virtual event, electrical engineering students were discussing about their studies and student life at Aalto University.
AR-glasses.jpg
Cooperation, Research & Art Published:

ACTOR Empowers Construction Workers with Process Automation

The ACTOR project brings together six organizations to automate the collection and use of real-time data for construction management. We talked with Aalto University, Carinafour, and VTT to learn about their aspirations for the project.
Microscopic image of giant gas vesicles.
Press releases, Research & Art Published:

Coating bubbles with protein results in a highly stable contrast agent for medical use

Researchers developed bubbles that are safe, highly stable, and function as contrast agent in medical applications. They could be used to diagnose, for example, cardiological issues, blood flow, and liver lesions.
Olli Halminen, photo by Jutta Kalli
Press releases Published:

Dissertation: "Slowing-down efficiency" could increase well-being of older people – as well as prevent chaos at emergency rooms

The management of Finnish social and health care is often fragmented, says doctoral researcher Olli Halminen from Aalto University's Department of Industrial Engineering and Management. He has examined how older people’s services in Finland function as a whole, and formulated suggestions for improvement.