Department of Electrical Engineering and Automation

Bionic and Rehabilitation Engineering

Bionic and Rehabilitation Engineering (BaRE) research group investigates engineering techniques for human-machine interfacing in order to support, augment and rehabilitate human motor function. Through advancements in basic physiology, motor control, and biomechanics, we tailor novel biosensing and control approaches, as well as design methodologies in order to push the boundaries of current state-of-the-art bionic limbs, exoskeletons and rehabilitation robots.
Human hand, robot hand

Bionic and Rehabilitation Engineering (BaRE) research group investigates engineering techniques for human-machine interfacing in order to support, augment and rehabilitate human motor function. Through advancements in basic physiology, motor control, and biomechanics, we tailor novel biosensing and control approaches, as well as design methodologies in order to push the boundaries of current state-of-the-art bionic limbs, exoskeletons and rehabilitation robots.

BaRE Research Group is located at the Aalto Health Technology House in Otakaari 3. In this unique environment, the group strives to combine the basic principles of human neuromuscular physiology with modern day technology in order to address some of the major questions in the areas of bionics and rehabilitation. BaRE is strongly committed to translational activities through which it ensures that the conducted research has a direct impact in the clinical and real-world environment.

IBA-setup

Bionic limbs, as a mean of functional restoration of the missing human function as well as human augmentation, are one of our main investigation topics. Through physiologically inspired interfacing links, we are aiming at providing natural and dexterous control of prosthetic systems. Moreover, we are interested in restoring the missing sensory components in order to “close the control loop” and provide an enhanced user experience. Finally, BaRE is focused on the user-centered design and therefore we are investigating the characteristics of clinical and daily application of bionic systems in order to understand and better quantify the performance of the developed solutions.

VR-setup

Wearable robots and robotic rehabilitation is a field in which we are striving to provide state-of-the-art technological solutions in order to deliver tailored therapies and assistance to those in need. Through intimate human-robot interfaces, we are looking to establish a collaborative and stimulating environment that can not only provide the required support, but also deliver highly engaging therapies at home or in clinics. While studying the interaction of the man and the machine at both biomechanical and neural levels, we are aiming to understand how body reacts to the applied technologies. Accordingly, we are looking to devise the best solutions that promote the ultimate synergy between the two.

Bionic and Rehabilitation Engineering research group is led by prof. Ivan Vujaklija ([email protected])

Group members

Latest publications

Minimum Time Headway in Platooning Systems Under the MPF Topology for Different Wireless Communication Scenario

Elham Abolfazlilangeroudi, Bart Besselink, Themistoklis Charalambous 2023 IEEE Transactions on Intelligent Transportation Systems

Consensus-based Networked Tracking in Presence of Heterogeneous Time-Delays

Mohammadreza Doostmohammadian, Mohammad Pirani, Usman A. Khan 2023 10th RSI International Conference on Robotics and Mechatronics, ICRoM 2022

Distributed Constraint-Coupled Optimization over Unreliable Networks

Mohammadreza Doostmohammadian, Usman A. Khan, Alireza Aghasi 2023 10th RSI International Conference on Robotics and Mechatronics, ICRoM 2022

DTAC-ADMM: Delay-Tolerant Augmented Consensus ADMM-based Algorithm for Distributed Resource Allocation

M. Doostmohammadian, W. Jiang, T. Charalambous 2023 2022 IEEE 61st Conference on Decision and Control (CDC)

Distributed Resource Allocation via ADMM over Digraphs

W. Jiang, M. Doostmohammadian, T. Charalambous 2023 2022 IEEE 61st Conference on Decision and Control (CDC)

Simultaneous and Proportional Real-Time Myocontrol of up to Three Degrees of Freedom of the Wrist and Hand

Markus Nowak, Ivan Vujaklija, Agnes Sturma, Claudio Castellini, Dario Farina 2023 IEEE Transactions on Biomedical Engineering

Design trends in actuated lower-limb prosthetic systems

Haoran Sun, Chaoming He, Ivan Vujaklija 2023 Expert Review of Medical Devices

Biomechanical Analysis of Body Movements of Myoelectric Prosthesis Users During Standardized Clinical Tests

Ivan Vujaklija, Moon Ki Jung, Timothy Hasenoehrl, Aidan D. Roche, Agnes Sturma, Silvia Muceli, Richard Crevenna, Oskar C. Aszmann, Dario Farina 2023 IEEE Transactions on Biomedical Engineering

Prosthetics and Innovation

Ivan Vujaklija, Dario Farina 2023 Blast Injury Science and Engineering A Guide for Clinicians and Researchers

Optimal Motor Unit Subset Selection for Accurate Motor Intention Decoding: Towards Dexterous Real-Time Interfacing

Dennis Yeung, Francesco Negro, Ivan Vujaklija 2023 IEEE Transactions on Neural Systems and Rehabilitation Engineering
More information on our research in the Aalto research portal.
Research portal
  • Published:
  • Updated: