David Radnell
Coordinator
Department of Mathematics and Systems Analysis
I am a pure mathematician motivated by problems in theoretical physics. My research interests lie at the interface of 2D conformal field theory, complex analytic Teichmueller theory, and geometric function theory. This work is related to the program of using vertex operator algebras to rigorously construct conformal field theory in the sense of G. Segal.
Full researcher profile
https://research.aalto.fi/...
Email
[email protected]
Phone number
+358503038065
Research groups
- Mathematical Physics, Coordinator
Publications
Slit-Strip Ising Boundary Conformal Field Theory 1: Discrete and Continuous Function Spaces
Taha Ameen, Kalle Kytölä, S. C. Park, David Radnell
2022
Mathematical Physics Analysis and Geometry
Schiffer operators and calculation of a determinant line in conformal field theory
David Radnell, Eric Schippers, Mohammad Shirazi, Wolfgang Staubach
2021
New York Journal of Mathematics
A Model of the Teichmüller space of genus-zero bordered surfaces by period maps
David Radnell, Eric Schippers, Wolfgang Staubach
2019
Conformal Geometry and Dynamics
Dirichlet spaces of domains bounded by quasicircles
David Radnell, Eric Schippers, Wolfgang Staubach
2019
Communications in Contemporary Mathematics
Quasiconformal maps of bordered Riemann surfaces with L2 Beltrami differentials
David Radnell, Eric Schippers, Wolfgang Staubach
2017
JOURNAL D ANALYSE MATHEMATIQUE
Quasiconformal Teichmueller theory as an analytical foundation for two-dimensional conformal field theory
David Radnell, Eric Schippers, Wolfgang Staubach
2017
Lie Algebras, Vertex Operator Algebras, and Related Topics
The Number of Symmetric Colorings of the Dihedral Group Dp
Jabulani Phakathi, David Radnell, Yuliya Zelenyuk
2016
Applied Mathematics and Information Sciences
Convergence of the Weil–Petersson metric on the Teichmüller space of bordered Riemann surfaces
David Radnell, Eric Schippers, Wolfgang Staubach
2016
Communications in Contemporary Mathematics
Dirichlet problem and sokhotski-plemelj jump formula on weil-petersson class quasidisks
David Radnell, Eric Schippers, Wolfgang Staubach
2016
Annales Academiae Scientiarum Fennicae. Mathematica
Weil–Petersson class non-overlapping mappings into a Riemann surface
David Radnell, Eric Schippers, Wolfgang Staubach
2016
Communications in Contemporary Mathematics
A Hilbert manifold structure on the Weil–Petersson class Teichmüller space of bordered Riemann surfaces
David Radnell, Eric Schippers, Wolfgang Staubach
2015
Communications in Contemporary Mathematics
The semigroup of rigged annuli and the Teichmüller space of the annulus
D. Radnell, E. Schippers
2012
Journal of the London Mathematical Society
Fiber structure and local coordinates for the teichmüller space of a bordered riemann surface
David Radnell, Eric Schippers
2010
Conformal Geometry and Dynamics
A complex structure on the set of quasiconformally extendible non-overlapping mappings into a Riemann surface
David Radnell, Eric Schippers
2009
Journal d Analyse Mathematique
A complex structure on the moduli space of rigged Riemann surfaces
D. Radnell, E. Schippers
2006
Journal of Geometry and Symmetry in Physics
Quasisymmetric sewing in rigged Teichmüller space
D. Radnell, E. Schippers
2006
Communications in Contemporary Mathematics