News

Visualizing interacting electrons in a molecule

Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule.

Understanding this kind of electronic effects in organic molecules is crucial for their use in optoelectronic applications, for example in organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and solar cells.

In their article published in Nature Physics, the research team demonstrates measurements on the organic molecule cobalt phthalocyanine (CoPC) that can be explained only by taking into consideration how electrons in the molecule interact with each other. CoPC is a commonly used molecule in organic optoelectronic devices. Electron-electron interactions alter its conductivity, which is directly related to device performance.

Left: Chemical structure of cobalt phthalocyanine (CoPC). Right: Experimental and theoretical wave functions of CoPC.

The Atomic Scale Physics group at Aalto University headed by Peter Liljeroth specializes on scanning tunneling microscopy (STM), which utilizes a tiny current between a sharp probe tip and a conducting sample to measure structural and electronic properties of the sample surface with atomic resolution. In this case, they used the STM to measure the current passing through a single molecule on a surface by injecting or removing electrons at different energies. Within the molecule, electrons 'live' on so-called orbitals, which define their energy and the shape of their quantum mechanical wavefunction. These orbitals can be measured by recording the current through the molecule as a function of the applied voltage.

Fabian Schulz, a post-graduate researcher in Liljeroth’s group, was surprised when the measurements on CoPC molecules did not fit the conventional interpretation of STM experiments on single molecules. “We saw several additional features in the recorded current where there should have been none according to the usual interpretation of these so-called tunneling spectra”, Schulz explains.

The experiments were performed on cobalt phthalocyanine (CoPC) molecules deposited on a one-atom thick layer of hexagonal boron nitride on an iridium surface.

A colleague from Aalto University and leader of the Quantum Many-Body Physics group, Ari Harju, suggested that the key to understanding the experimental results might be a form of electron-electron interaction that usually is neglected in interpreting such experiments. In collaboration with Ari P. Seitsonen from the University of Zurich, Ari Harju and his team calculated the electronic properties of the molecule, including quantum mechanical effects that went beyond prevailing methods. This novel interpretation was confirmed when Liljeroth and his team were able to match the experimentally measured molecular orbitals with the predictions of the theory. “It was very exciting to see this kind of an interplay between theory and experiment”, Liljeroth remarks.

Scanning tunneling microscopy (STM) image of cobalt phthalocyanine (CoPC) molecules in two different charge states.

Ari Harju concludes: “The proof that such theoretically predicted, exotic effects can be observed experimentally is an important step forward in understanding how current is transported across individual molecules and molecular assemblies.”

The study was performed at Aalto University Department of Applied Physics and at the University of Zurich. The groups at Aalto are part of the Academy of Finland’s Centres of Excellence in “Low Temperature Quantum Phenomena and Devices” and “Computational Nanosciences”. Academy of Finland and the European Research Council ERC funded the research.

Nature Physics article


Further information:

Professor Peter Liljeroth
[email protected]
tel: +358 50 363 6115
http://physics.aalto.fi/groups/stm/

Dr Ari Harju
[email protected]
tel: +358 50 571 0412
http://physics.aalto.fi/groups/comp/qmp

Department of Applied Physics
Aalto University School of Science
http://physics.aalto.fi/

 

  • Published:
  • Updated:
Share
URL copied!

Read more news

Kimchi and Chips
Research & Art Published:

Artist talk: Kimchi and Chips

We are pleased to welcome you to an artist talk by Kimchi and Chips!
CYBER_Aki-Pekka_Sinikoski010.jpg
Cooperation, Research & Art Published:

School of Science researchers now involved in five Centres of Excellence

SCI researchers are partners in three new Centres of Excellence: Life-Inspired Hybrid Materials, Randomness and structures, and Virtual laboratory for molecular level atmospheric transformations.
A detail of spider silk material developed in Aalto University, image Fotoni Film & Communications
Research & Art, University Published:

Two new Centres of Excellence to Aalto University – the university is also involved in two consortia

Electromechanical Energy Conversion and Transfer and Life-Inspired Hybrid Materials were chosen as Centres of Excellence led by Aalto University
Lähikuvassa henkilön kädet, jotka ottavat puhelimella kuvaa lavaa kohti tapahtumassa. Taustalla sumea kuva yleisöstä ja lila sävyisistä valoista lavalla.
Research & Art, University Published:

Call for Sessions: Sustainability Science Days 2022

Invitation for scientific leaders from different universities to propose sessions for Sustainability Science Days conference 2022: Systemic Transformations to Sustainable Futures. The international, two-day conference will be held on May 18-19, 2022.

Please send your session proposal by November 7, 2021.