News

Visualizing interacting electrons in a molecule

Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule.

Understanding this kind of electronic effects in organic molecules is crucial for their use in optoelectronic applications, for example in organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and solar cells.

In their article published in Nature Physics, the research team demonstrates measurements on the organic molecule cobalt phthalocyanine (CoPC) that can be explained only by taking into consideration how electrons in the molecule interact with each other. CoPC is a commonly used molecule in organic optoelectronic devices. Electron-electron interactions alter its conductivity, which is directly related to device performance.

Left: Chemical structure of cobalt phthalocyanine (CoPC). Right: Experimental and theoretical wave functions of CoPC.

The Atomic Scale Physics group at Aalto University headed by Peter Liljeroth specializes on scanning tunneling microscopy (STM), which utilizes a tiny current between a sharp probe tip and a conducting sample to measure structural and electronic properties of the sample surface with atomic resolution. In this case, they used the STM to measure the current passing through a single molecule on a surface by injecting or removing electrons at different energies. Within the molecule, electrons 'live' on so-called orbitals, which define their energy and the shape of their quantum mechanical wavefunction. These orbitals can be measured by recording the current through the molecule as a function of the applied voltage.

Fabian Schulz, a post-graduate researcher in Liljeroth’s group, was surprised when the measurements on CoPC molecules did not fit the conventional interpretation of STM experiments on single molecules. “We saw several additional features in the recorded current where there should have been none according to the usual interpretation of these so-called tunneling spectra”, Schulz explains.

The experiments were performed on cobalt phthalocyanine (CoPC) molecules deposited on a one-atom thick layer of hexagonal boron nitride on an iridium surface.

A colleague from Aalto University and leader of the Quantum Many-Body Physics group, Ari Harju, suggested that the key to understanding the experimental results might be a form of electron-electron interaction that usually is neglected in interpreting such experiments. In collaboration with Ari P. Seitsonen from the University of Zurich, Ari Harju and his team calculated the electronic properties of the molecule, including quantum mechanical effects that went beyond prevailing methods. This novel interpretation was confirmed when Liljeroth and his team were able to match the experimentally measured molecular orbitals with the predictions of the theory. “It was very exciting to see this kind of an interplay between theory and experiment”, Liljeroth remarks.

Scanning tunneling microscopy (STM) image of cobalt phthalocyanine (CoPC) molecules in two different charge states.

Ari Harju concludes: “The proof that such theoretically predicted, exotic effects can be observed experimentally is an important step forward in understanding how current is transported across individual molecules and molecular assemblies.”

The study was performed at Aalto University Department of Applied Physics and at the University of Zurich. The groups at Aalto are part of the Academy of Finland’s Centres of Excellence in “Low Temperature Quantum Phenomena and Devices” and “Computational Nanosciences”. Academy of Finland and the European Research Council ERC funded the research.

Nature Physics article


Further information:

Professor Peter Liljeroth
[email protected]
tel: +358 50 363 6115
http://physics.aalto.fi/groups/stm/

Dr Ari Harju
[email protected]
tel: +358 50 571 0412
http://physics.aalto.fi/groups/comp/qmp

Department of Applied Physics
Aalto University School of Science
http://physics.aalto.fi/

  • Published:
  • Updated:
Share
URL copied!

Read more news

Professori Ville Alopaeus.
Research & Art Published:

Get to know us: Ville Alopaeus

Ville Alopaeus has worked as a professor at Aalto University School of Chemical Engineering since 2008. Researching separation processes and process modelling, Alopaeus aims to contribute to the transition towards a renewable energy and materials environment.
Aalto University School of Business, a student ascending, public art of Risto Suomi on the wall, photo Mikko Raskinen
Research & Art Published:

Time off work - the biggest reason why fewer women are CEOs

Women are underrepresented in CEO positions partly because they spend more time outside of the labour market during the years when their careers are most likely to take off. Women also less often work in sales or production, which are common pathways for CEO recruitment.
Photo of a smiling young woman with scientific graphic showing pink balls representing quantum mechanic effects
Research & Art Published:

A summer internship with a twist: the story of prize-winning student Netta Karjalainen

Read the story of prize-winning Bachelor student’s summer internship at Aalto
image of Aaltodoc main page
Research & Art Published: