News

Unravelling the microscopic structure of materials

XPEC, a project led by Miguel Caro and Dorothea Golze, has been granted 12.5 million hours of computing time to pilot-test CSC's (IT Center for Science) new supercomputer facilities.
XPEC/picture: Dorothea Golze

XPEC will integrate together machine-learning data classification and high-dimensional regression with multilevel quantum chemistry methods (DFT and GW) to create the ultimate predictive tool for computational generation of X-ray spectra.

X-ray spectroscopy is a powerful tool to unravel the microscopic structure of materials, that is, how atoms are arranged at the nanoscale. This experimental technique would in principle allow us to precisely establish the nature of chemical bonding in functional materials and make the link between a material's atomic structure and its performance in real-life applications. This knowledge is of vital importance to optimize the new generation of materials needed for environmentally-friendly technologies, such as clean fuel production and sequestration of atmospheric CO2. Unfortunately, interpretation of X-ray spectra of complex materials is extremely challenging, since signals coming from different atomic environments overlap. The new computational approach developed within the XPEC project will provide an invaluable tool to predict X-ray spectra and interpret existing experimental results.

Picture: Dorothea Golze

  • Published:
  • Updated:
Share
URL copied!

Read more news

Dr. Swarnalok De and logos of the Finnish Cultural Foundation, Aalto University and MMD group
Research & Art Published:

Dr. Swarnalok De receives a one-year grant from the Finnish Cultural Foundation

Awarded for research on the development of wearable healthcare sensors for autonomous health monitoring of the aging population
The magnetic properties of a material can affect how it interacts with light.
Press releases, Research & Art Published:

A new optical metamaterial makes true one-way glass possible

Researchers have discovered how to make a new optical metamaterial that would underpin a variety of new technologies.
Mikko Alava ja kolme muuta tutkimusryhmän jäsentä kuvattuna teknisen laitteen äärellä.
Research & Art Published:

Significant grants for science from the Finnish Cultural Foundation

A total of thirty individuals and research groups from Aalto University received grants from the Finnish Cultural Foundation for science and art. Professors Harri Lipsanen and Zhipei Sun and their team, were awarded a large grant to develop electronic components mimicking the structure and function of the human brain. Among the grantees is also Professor Mikko Alava, whose team is developing water-resistant foams as substitutes for plastic using AI-based methods.
Photo
Research & Art Published:

Overview of Aalto's open access publications 2023

90 % of Aalto's scientific journal articles published in 2023 are available open access.