News

Transparent wood-based coating doesn’t fog up

Coatings made from a wood by-product can keep our glasses and windshields clear
Värikkäitä ja läpinäkyviä pinnoitenäytteitä puupölkyn päällä.
Lignin nanoparticles form colourful coatings when they are applied as multilayer films. Photo: Alexander Henn / Aalto University

Researchers have developed a way to turn a waste material from wood into a bio-based transparent film that can be used for anti-fogging or anti-reflective coatings on glasses or vehicle windows. In addition to offering an alternative to the toxic synthetic materials currently used, this approach transforms a waste product into a valuable carbon sink.

Lignin is an abundant waste product in paper and pulp production that is very difficult to process, so it’s usually burned to produce heat. Creating lignin nanoparticles to use for anti-fogging coatings isn’t a new idea, but scientists haven’t yet been able to turn them into transparent films.

‘Optical coatings need to be transparent, but so far, even rather thin lignin particle films have been visible. We knew that small particles appear less turbid, so I wanted to see if I could make invisible particle films by pushing the particle size to a minimum,’ says doctoral researcher Alexander Henn, the study’s lead author. The team used acetylated lignin and developed an improved way to esterify it in a reaction that takes just a few minutes and happens at the relatively low temperature of 60 °C.

‘The lignin particles I made from the acetylated lignin had rather surprising properties, which made the rest of this study very interesting. The possibility to make photonic films, for example, came as a total surprise,’ says Henn.

In addition to anti-fogging and anti-reflective coatings, the new approach can also make coloured films from lignin nanoparticles. By controlling the thickness of the coating and using multi-layer films, the team created materials with different structural colours.

Sahar Babaeipour’s efforts were key to controlling the particles’ photonic properties,’ says Henn, adding that researchers Paula Nousiainen and Kristoffer Meinander brought expertise in lignin chemistry and photonic phenomena, respectively, helping the team make sense of their results and use them effectively.

Ihminen pitelee silmälaseja, joissa toinen linssi on huurussa ja toinen ei.
Doctoral researcher Alexander Henn demonstrates the anti-fogging in eyewear. Photo: Alexander Henn / Aalto University

According to the team’s feasibility study, the ease of the reaction and its high yield mean that it could profitably be scaled up to industrial levels. ‘Lignin-based products could be commercially valuable and simultaneously act as carbon sinks, helping relieve the current fossil fuel-dependence and reduce carbon dioxide emissions,’ says Professor Monika Österberg. ‘High value-added applications like this are important to drive lignin valorisation and move us away from using lignin only as a fuel.’

Henn notes the study benefited from having perspectives that took it beyond the lab bench. ‘Teamwork was an important part of making this study impactful. We were able to include the techno-economic analysis with the help of Professor Pekka Oinas and doctoral researcher Susanna Forssell,’ he says. 

The study was published in Chemical Engineering Journal and was carried out as part of FinnCERES, the Academy of Finland’s flagship centre for materials bioeconomy research.

  • Updated:
  • Published:
Share
URL copied!

Read more news

A person speaking into a smartwatch with a silver mesh band, displaying a waveform on the screen.
Press releases, Research & Art Published:

Your voice gives away valuable personal information, so how do you keep that data safe?

With speech technologies becoming increasingly common, researchers want to make sure we don’t give away more information than we mean to.
Three people sitting at a bus stop with maps and signs behind them. One has a backpack on the ground.
Research & Art Published:

Aalto in 2025: Quantum leaps, creative breakthroughs and solutions for a better life

Growth, technology and industrial renewal; human-centred solutions; health and everyday wellbeing; and enjoyable daily life and thriving communities.
A collage of nine people in formal and casual attire. Backgrounds vary from office settings to plain walls.
Research & Art Published:

Research Council of Finland establishes a Center of Excellence in Quantum Materials

The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
Split image: left shows a white truck on a road with plants; right shows digital lines and a partial face. Text: unite! #UniteSeedFund
Awards and Recognition, Cooperation Published:

Two Unite! Seed Fund projects involving Aalto secure top EU funding

Two prestigious EU grants have been awarded to projects that were initially supported with Unite! Seed Funding. Both projects involve Aalto.