News

Theoretical study elucidates deep surface structure of emerging perovskite material

New research by the CEST group reveals atomic and electronic structure of perovskite material for future photovoltaic applications
Graphic showing 2 phases of the perovskite material CsPbI3
Graphic taken from Seidu et al., J. Chem. Phys. 154, 074712 (2021)
A photo showing doctoral student Azimatu Seidu

The results of a new theoretical study into the surfaces of CsPbI3, an emerging perovskite material with potential for photovoltaic applications, highlights both the complexity of such surfaces and paves the way for future surface science and interface studies.

Cesium lead triiodide is an emerging all-inorganic perovskite material which has remarkable stability in ambient conditions. These properties make it particularly suitable for use in photovoltaic applications.

A recent article authored by Azimatu Seidu unravels the (001) surface of cesium lead triiodide (CsPbI3) using a first principles method. In particular, Seidu and co-workers investigated the atomic and electronic structure of the cubic (α) and orthorhombic (γ) phases of CsPbI3 surfaces. For both phases, Seidu studied surfaces with CsI- (CsI-T) and PbI2-terminations (PbI2-T) and found CsI-T to be more stable than PbI2-T.

In addition, the work explored surface reconstructions of CsI-T by adding and removing Cs, Pb, I, CsI, PbI and PbI2 units. Interestingly, adding or removing units of nonpolar CsI and PbI2 turned out the most stable.

These results now offer concrete guidance for growing favourable CsPbI3 surfaces for use in photovoltaics. Seidu now plans to combine her recent work and previous search on suitable coating materials for perovskites to model stable and robust perovskites for solar applications. The current research combines a machine learning based Bayesian optimization structural search (BOSS) and density functional theory (DFT) to obtain stable coating-perovskite interfaces. 

This article was published in the Journal of Chemical Physics (https://doi.org/10.1063/5.0035448).

  • Published:
  • Updated:
Share
URL copied!

Read more news

Päivi Törmä ja Sebastiaan van Dijken
Press releases, Research & Art Published:

Guiding spin waves with light could lead to faster and much more energy efficient computing

Major new research project at Aalto University aims to develop new type of computing device that eliminates massive amounts of waste heat produced by current devices
The picture shows the School of Business in winter time and during sunset. The photo was taken by Mikko Raskinen from Aalto University.
Research & Art Published:

Climate change is serious business

According to Senior University Lecturer Leena Lankoski, there are both compelling sustainability reasons and compelling business reasons for companies to urgently address their environmental impact.
City silhouette illustration with data symbols.
Research & Art Published:

Register for Research Data Management and Open Science Training in Spring 2022!

Aalto Research Data Management Network organises training in research data management and open science in spring 2022.
Purppuranvärisellä taustalla vaaleanrusehtavia pellavaisia kuituja, kuva Julie-Anne Gandierin materiaalitutkimuksesta, kuva Valeria Azovskaya
Research & Art Published:

Three flagships receive continued funding

Materials Bioeconomy FinnCERES, Finnish Center for Artificial Intelligence FCAI and the platform for photonics research PREIN have received the Academy of Finland’s funding for second flagship term