News

Stopping the unstoppable with atomic bricks

Aalto University theorist part of team that developed method for trapping elusive electrons
Scanning tunneling microscope tip confining electrons in graphene

Graphene's unique 2D structure means that electrons travel through it differently to most other materials. One consequence of this unique transport is that applying a voltage to them doesn't stop the electrons like it does in most other materials. This is a problem because to make useful applications out of graphene and its unique electrons like quantum computers, it is necessary to be able to stop and control graphene electrons.

An interdisciplinary team of scientists from the Universidad Autonoma de Madrid (Spain), Université Grenoble Alpes (France), International Iberian Nanotechnology Laboratory (Portugal) and Aalto University has managed to solve this long-standing problem. They combined experimental researchers including Eva Cortés del Río, Pierre Mallet, Héctor González‐Herrero, José María Gómez‐Rodríguez, Jean‐Yves Veuillen and Iván Brihuega with theorists, including Joaquín Fernández-Rossier and Jose Lado, assistant Professor in the department of Applied Physics at Aalto.

The experimental team used atomic bricks to build walls capable of stopping the graphene electrons. This was achieved by creating atomic walls that confined the electrons, leading to structures whose spectrum was then compared with theoretical predictions, demonstrating that electrons were confined. In particular, it was obtained that the engineered structures gave rise to nearly perfect confinement of electrons, as demonstrated from the emergence of sharp quantum well resonances with a remarkably long lifetime.

The work, published this week in Advanced Materials, demonstrates that impenetrable walls for graphene electrons can be created by collective manipulation of a large number of hydrogen atoms. In the experiments, a scanning tunnelling microscope was used to construct artificial walls with sub nanometric precision. This led to graphene nanostructures of arbitrarily complex shapes, with dimensions ranging from two nanometres to one micron.

Importantly, the developed method is non-destructive, allowing to erase and rebuild the nanostructures at will, providing an unprecedented degree of control to create artificial graphene devices. The experiments demonstrate that the engineered nanostructures are capable of perfectly confining the graphene electrons in these artificially designed structures, overcoming the critical challenge imposed by Klein tunnelling. Ultimately, this opens up a plethora of exciting new possibilities, as the created nanostructures realize graphene quantum dots that can be selectively coupled, opening ground-breaking possibilities for artificially designed quantum matter.

Read More

“Quantum Confinement of Dirac Quasiparticles in Graphene Patterned with Sub‐Nanometer Precision” Advanced Materials https://doi.org/10.1002/adma.202001119

Contact

Jose Lado

Jose Lado

Assistant professor
Department of Applied Physics
  • Published:
  • Updated:
Share
URL copied!

Related news

Pitkäaikaissairauksien hoito on pirstaloitunutta ja kallista – ratkaisua haetaan virtuaalisesta hoidonohjaamosta
Research & Art Published:

Virtual care management system for solving fragmentation of chronic diseases treatment

The project, which has a budget of millions of euros and is led by Aalto University, involves University of Helsinki and numerous companies in the healthcare field.
Painted trees at Kipsari glass wall
Campus, Research & Art, Studies Published:

Holiday break at Takeout

Takeout will be closed 19.12.2020 - 10.01.2021
Nitin Sawhney standing outdoors with his bike, green grass and trees on the background
Research & Art Published:

Nitin Sawhney receives an Academy of Finland grant for analyzing and reconstructing crisis narratives

Professor Sawhney hopes that his collaborative research will offer insights into how crisis narratives emerge in society during the global pandemic
museum of impossible forms
Research & Art Published:

Museum of Impossible Forms wins State Art Prize 2020

ViCCA congratulates its students and alumni who have been active (and often founding) members of the Museum of Impossible Forms (est. 2017) – an anti-racist and queer-feminist cultural center in the suburb of Kontula – for the 2020 State Art Prize that they received from the Arts Promotion Centre Finland.