Simple accuracy boost for core excitation calculations

Relativistic corrections that are important for core excitations in molecules and materials are incorporated in complex quantum mechanical calculations in an efficient manner.
Relativistic corrections (RC) greatly improve the accuracy of evGW0 calculations for the CORE65 benchmark set of molecular core excitations
Relativistic corrections (RC) greatly improve the accuracy of costly quantum mechanical calculations (evGW0) for the CORE65 benchmark set of molecular core excitations.

Core level spectroscopy is an important experimental technique in physics, chemistry and materials science. Core level experiments are often accompanied by quantum mechanical calculations that aid the interpretation of the measured data. A promising recent development is to use the GW Green's function formalism as the quantum mechanical method of choice, which offers several distinct advantages over the conventional density-functional theory (DFT) choice.

CEST researchers have now derive a relativistic correction scheme that improves the accuracy of 1s core-level binding energies calculated from Green’s function theory in the GW approximation. The scheme is element specific and does not add computational overhead. It reduces the mean absolute error (MAE) of previously reported benchmark set of 65 core-state excitations [D. Golze et al., J. Phys. Chem. Lett. 11, 1840–1847 (2020)] from 0.55 eV to 0.30 eV and eliminates the species dependence of the MAE, which otherwise increases with the atomic number. The correction terms are available in the corresponding publication and can now be widely deployed in molecular and materials science.

More details can be found in the following publication:

Relativistic correction scheme for core-level binding energies from GW,  Levi Keller, Volker Blum,  Patrick Rinke, and  Dorothea Golze, J. Chem. Phys. 153, 114110 (2020)

  • Published:
  • Updated:
URL copied!

Read more news

people exploring the walk-in closet that provides solutions for a sustainable fashion and textiles future
Cooperation, Research & Art, University Published:

'Wardrobe of the future' – sustainable solutions for the fashion and textile industry

The exhibition is showcasing solutions from researchers and students on sustainable future for the fashion and textile industry.
FinnFusion is a collaboration aiming to make fusion energy a reality. Photo: VTT.
Cooperation, Press releases, Research & Art Published:

Aalto Scientists Experiment with Helium Plasma to Help Pave Way for Fusion Energy

As part of FinnFusion, itself belonging to the EUROfusion consortium, Aalto scientists are experimenting with helium plasma to improve the future operations of Iter, an international fusion energy collaboration under construction in France.
Kuvassa näkyy Taloudenpuolustuskurssin puhujia keskustelemassa lavalla.
Research & Art Published:

Eighth Economic Defence Course digged into the topic of risk

For professors at the School of Business, times of radical uncertainty call for efforts to outline alternative scenarios and a critical perspective on talk of a ‘new era’.
Electronics - ICT Otaniemessä. Mikroelektroniikan suunnittelua.
Research & Art Published:

The EU funds a consortium with almost EUR 20 million in future radar research

Aalto University participates in the ARTURE consortium, which is funded by the European Defence Fund (EDF).