News

Room for Thought: Brain Region That Watches for Walls Identified

Advanced imaging technologies observe one brain area’s ability to rapidly sense our surroundings; lays groundwork for improvements to machine learning and robotics
Karoliina Hellbergin maalaus Violet floor (time is up). Kuva: J. Tiainen.
Karoliina Hellberg's Violet floor (time is up). Kuva: J. Tiainen.

To move through the world, you need a sense of your surroundings, especially things that might get in your way: the walls, ceiling and other barriers that define the geometry of the space around you. An international team of neuroscientists has identified an area of the brain dedicated to perceiving this geometry. This brain region encodes the spatial constraints of a scene at lightning-fast speeds, and likely contributes to our instant sense of our surroundings; orienting us in space, so we can avoid bumping into things and navigate safely through our environment.

Erilaisia tilanäkymiä. Kuva: Linda Henriksson.
Different views from the experiment. Credit: Linda Henriksson.

“The speed with which our brains sense the basic geometry of our surroundings is an indication of the importance of having this information quickly,” said Dr. Linda Henriksson a lecturer in neuroscience at Aalto. “It is key to knowing whether you’re inside or outside, or what might be your options for navigation.”

“Vision gives us an almost instant sense where we are in space, and in particular of the geometry of the surfaces — the ground, the walls — which constrain our movement. It feels effortless, but it requires the coordinated activity of multiple brain regions,” said Nikolaus Kriegeskorte, PhD, a principal investigator at Columbia’s Zuckerman Institute and the paper’s senior author.

To figure out how the brain perceives the geometry of its surroundings, the research team asked volunteers to look at images of different three-dimensional scenes. An image might depict a typical room, with three walls, a ceiling and a floor. The researchers then systematically changed the scene: by removing the wall, for instance, or the ceiling. Simultaneously, they monitored participants’ brain activity through a combination of two cutting-edge brain-imaging technologies at Aalto’s neuroimaging facilities.

The study focused on a region of the brain called the occipital place area (OPA). “Previous studies had shown that OPA neurons encode scenes, rather than isolated objects,” said Dr. Kriegeskorte, “But we did not yet understand what aspect of the scenes this region’s millions of neurons encoded.”

After analyzing the participants’ brain scans, Drs. Kriegeskorte and Henriksson found that the OPA activity reflected the geometry of the scenes. The OPA activity patterns reflected the presence or absence of each scene component — the walls, the floor and the ceiling — conveying a detailed picture of the overall geometry of the scene. However, the OPA activity patterns did not depend on the components’ appearance; the textures of the walls, floor and ceiling — suggesting that the region ignores surface appearance, so as to focus solely on surface geometry. The brain region appeared to perform all the necessary computations needed to get a sense of a room’s layout extremely fast: in just 100 milliseconds. 

Moving forward, the research team plans to incorporate virtual reality technology to create more realistic 3D environments for participants to experience. They also plan to build neural network models that mimic the brain’s ability to perceive the environment.

“We would like to put these things together and build computer vision systems that are more like our own brains, systems that have specialized machinery like what we observe here in the human brain for rapidly sensing the geometry of the environment,” said Dr. Kriegeskorte.

The full paper is titled “Rapid invariant encoding of scene layout in human OPA.”  

This research was supported by the Academy of Finland (Postdoctoral Research Grant; 278957), the British Academy (Postdoctoral Fellowship; PS140117) and the European Research Council (ERC-2010-StG 261352).

 

  • Published:
  • Updated:
Share
URL copied!

Read more news

Image and photo by Aalto University, Giulnara Launonen. MMD logo by Aalto University, Mithila Mohan
Research & Art Published:

Multifunctional Materials Design: Highlights of 2022

Our group's milestones of the previous year
Nainen rannalla tuulisella säällä hymyilee, taustalla meri kuohuaa
Appointments, Research & Art Published:

Professor Ranja Hautamäki: ‘Diverse urban nature is key to increasing well-being and carbon sinks’

Professor of Landscape Architecture is tackling the issues of climate change mitigation and urban carbon sinks.
NASAn Curiosity-mönkijä kuvaama pölypyörre Marsin Gale-kraatterissa. Kuvankäsittely: Henrik Kahanpää. Alkuperäinen kuva: NASA / JPL-Caltech
Research & Art, Studies Published:

On Mars the weather varies dramatically, however the planet’s climate is not changing

The doctoral dissertation of Henrik Kahanpää also questions a prevailing perception related to dust devils on Mars. As a researcher, he hopes that humans would never go to Mars.
 Tutkimustyössä hyödynnetään Aalto-yliopiston radiokaiutonta huonetta Otaniemessä. Kuva: Aalto-yliopisto / Unto Rautio
Cooperation, Research & Art Published:

New doctoral programme focuses on the energy efficiency of radio waves

Nokia's donation to Aalto University will support research into new mobile communications systems, and particularly hardware development.