News

Room for Thought: Brain Region That Watches for Walls Identified

Advanced imaging technologies observe one brain area’s ability to rapidly sense our surroundings; lays groundwork for improvements to machine learning and robotics
Karoliina Hellbergin maalaus Violet floor (time is up). Kuva: J. Tiainen.
Karoliina Hellberg's Violet floor (time is up). Kuva: J. Tiainen.

To move through the world, you need a sense of your surroundings, especially things that might get in your way: the walls, ceiling and other barriers that define the geometry of the space around you. An international team of neuroscientists has identified an area of the brain dedicated to perceiving this geometry. This brain region encodes the spatial constraints of a scene at lightning-fast speeds, and likely contributes to our instant sense of our surroundings; orienting us in space, so we can avoid bumping into things and navigate safely through our environment.

Erilaisia tilanäkymiä. Kuva: Linda Henriksson.
Different views from the experiment. Credit: Linda Henriksson.

“The speed with which our brains sense the basic geometry of our surroundings is an indication of the importance of having this information quickly,” said Dr. Linda Henriksson a lecturer in neuroscience at Aalto. “It is key to knowing whether you’re inside or outside, or what might be your options for navigation.”

“Vision gives us an almost instant sense where we are in space, and in particular of the geometry of the surfaces — the ground, the walls — which constrain our movement. It feels effortless, but it requires the coordinated activity of multiple brain regions,” said Nikolaus Kriegeskorte, PhD, a principal investigator at Columbia’s Zuckerman Institute and the paper’s senior author.

To figure out how the brain perceives the geometry of its surroundings, the research team asked volunteers to look at images of different three-dimensional scenes. An image might depict a typical room, with three walls, a ceiling and a floor. The researchers then systematically changed the scene: by removing the wall, for instance, or the ceiling. Simultaneously, they monitored participants’ brain activity through a combination of two cutting-edge brain-imaging technologies at Aalto’s neuroimaging facilities.

The study focused on a region of the brain called the occipital place area (OPA). “Previous studies had shown that OPA neurons encode scenes, rather than isolated objects,” said Dr. Kriegeskorte, “But we did not yet understand what aspect of the scenes this region’s millions of neurons encoded.”

After analyzing the participants’ brain scans, Drs. Kriegeskorte and Henriksson found that the OPA activity reflected the geometry of the scenes. The OPA activity patterns reflected the presence or absence of each scene component — the walls, the floor and the ceiling — conveying a detailed picture of the overall geometry of the scene. However, the OPA activity patterns did not depend on the components’ appearance; the textures of the walls, floor and ceiling — suggesting that the region ignores surface appearance, so as to focus solely on surface geometry. The brain region appeared to perform all the necessary computations needed to get a sense of a room’s layout extremely fast: in just 100 milliseconds. 

Moving forward, the research team plans to incorporate virtual reality technology to create more realistic 3D environments for participants to experience. They also plan to build neural network models that mimic the brain’s ability to perceive the environment.

“We would like to put these things together and build computer vision systems that are more like our own brains, systems that have specialized machinery like what we observe here in the human brain for rapidly sensing the geometry of the environment,” said Dr. Kriegeskorte.

The full paper is titled “Rapid invariant encoding of scene layout in human OPA.”  

This research was supported by the Academy of Finland (Postdoctoral Research Grant; 278957), the British Academy (Postdoctoral Fellowship; PS140117) and the European Research Council (ERC-2010-StG 261352).

 

  • Published:
  • Updated:
Share
URL copied!

Related news

Taiteellinen kuva panssaroidusta superhydrofobisesta pinnasta, joka kestää iskuja ja hylkii nesteitä tehokkaasti. Kuva: Juha Juvonen.
Cooperation, Press releases, Research & Art Published:

New funding to commercialise high-tech liquid-repelling coatings

New funding to get damage-resistant, liquid-repelling surfaces out of the laboratory and onto solar panels, skis, and more
The computer game could help in the treatment of depression alongside therapy and drug treatment. Picture: Matias Palva’s research group, Aalto University.
Press releases Published:

Researchers developing computer game to treat depression

Playing a therapeutic action game can ease symptoms in patients with depression, and improve their cognitive performance
An electron microscope image of the device used to extract entangled electrons
Press releases Published:

Entangling electrons with heat

Entanglement is key for quantum computing and communications technology; Aalto researchers can now extract entangled electrons using heat
Ihminen tekemässä työtä laboratotiossa.
Press releases, Research & Art Published:

How to motivate people to comply voluntarily with necessary restrictions – 13 principles for effective COVID-19 related communication

Decision-makers and experts should support people's autonomy, competence and relatedness in their COVID-19 related communications with citizens.