News

Researchers mimic how water and wind create complex shapes in nature

No hands required: new study shows how particles can be directed into desired shapes with energy fields and smart algorithm.
Tilannekuvia siitä, miten hiukkaset muuttavat muotoaan prosessin eri vaiheissa niitten alkuperäisestä jakautumisesta lopputulokseen. Kuva: Aalto-yliopisto
Snapshots of a shape formation experiment showing several stages of the process, from the initial particle distribution to the end result. Photo: Aalto University

Intricate natural formations like star-shaped sand dunes or arc-shaped rocks can appear so purposeful in form that it’s easy to wonder whether someone has designed them. Scientists have long recognised that a particular combination of random and chaotic energy fields can, over a long period of time, give rise to these kinds of unique formations that dot our globe. Few, however, have succeeded in replicating Mother Nature’s touch.  
Researchers at Aalto University have now found a way to mimic the natural processes that create complex shapes and landscapes with the help of a vibrating plate and resulting energy fields. The results are published on 22 September 2021 in Science Advances. 

To create the effect, the team distributed up to 100 particles of tiny metal balls – like those used commonly in soldering – onto a silicon plate measuring 5x5 cm. A camera and smart algorithm allowed the team to track and manipulate the particles into desired shapes, like letters of the alphabet, as the plate vibrated, creating nonlinear energy fields.

‘We used the camera to determine the location of the particles, and the algorithm selected the most appropriate vibration frequency to move the particles in the desired direction. The particles move across the plate in a particular direction depending on the vibration frequency, and the same frequency can cause very different directions of movement in different parts of the plate,’ explains Professor Quan Zhou, who leads the research group behind the findings.

The researchers were surprised at how well the smart algorithm was able to predict the movement of the particles at different frequencies, despite the complexity of their movement. The algorithm efficiently minimised the difference between the target shape and actual particle distribution on the plate.

‘The movement of the particle swarm is similar to natural phenomena in which natural materials are shaped by the power of wind and water. The method should work at both smaller and larger scales, and could have many future applications where using hands or tools is difficult,’ says Doctoral Candidate Artur Kopitca.

Typically, manufacturing a product with a particular shape requires a mould or a pair of skilled hands. The researchers believe that their method inspired by nature could be used to sort cells in medical and bioscience research or as an industrial production method.

A key question that remains open, however, is how many particles can be controlled and how the process can be integrated with other systems which have similar dynamic properties, such as turbulent flows.

Professor Zhou’s research group has previously studied the properties of vibrating plates and how they can be used to guide particles along a particular route or towards an end destination. This is the first time that they have attempted to create shapes by mimicking natural phenomena.

The Open Access article published in Science Advances is available here.

See the video moving particles.

Further information:

Professor Quan Zhou
Aalto University
[email protected]
+358 40 855 0311

Doctoral Candidate
Artur Kopitca
Aalto University
[email protected]
+358 44 948 8731

 

  • Published:
  • Updated:
Share
URL copied!

Read more news

A night-vision image of a mouse swimming in darkness
Press releases Published:

The limits of vision: seeing shadows in the dark

A dedicated neural circuit in the retina detects shadows even in near-complete darkness
The design space in the virtual reality task
Press releases, Research & Art Published:

Designers find better solutions with computer assistance, but sacrifice creative touch

Computer-guided design can propose more solutions and balance out human inexperience and design fixation
Two models wearing grey solar cell clothing.
Press releases Published:

Researchers developed invisible, machine-washable solar cell technology for clothing

The discrete nature of the cells protects them – and makes the clothes more attractive, the physics and design researchers say. Promising applications include work and outdoor clothing, and curtains which react to changes in the amount of light.
A night sky with the northern lights visible behind the silhouettes of trees. / Yötaivas, jossa revontulet näkyvät puiden siluettien takana.
Press releases Published:

The aurora borealis can be heard even when they can’t be seen

Recordings reveal sounds linked with geomagnetic activity that’s too weak to cause northern lights at the same spot