News

Researchers develop better way to determine safe drug doses for children

New research on organ maturation models could lead to improvements in drug development
Lääkäri juttelee lapsen kanssa
Image: Matti Ahlgren

Determining safe yet effective drug dosages for children is an ongoing challenge for pharmaceutical companies and medical doctors alike. A new drug is usually first tested on adults, and results from these trials are used to select doses for pediatric trials. The underlying assumption is typically that children are like adults, just smaller, which often holds true, but may also overlook differences that arise from the fact that children’s organs are still developing.

Compounding the problem, pediatric trials don’t always shed light on other differences that can affect recommendations for drug doses. There are many factors that limit children’s participation in drug trials – for instance, some diseases simply are rarer in children– and consequently, the generated datasets tend to be very sparse. 

To make drugs and their development safer for children, researchers at Aalto University and the pharmaceutical company Novartis have developed a method that makes better use of available data.

‘This is a method that could help determine safe drug doses more quickly and with less observations than before,’ says co-author Aki Vehtari, anassociate professor of computer scienceat Aalto University and the Finnish Center for Artificial Intelligence FCAI.

In their study, the research team created a model that improves our understanding of how organs develop. 

‘The size of an organ is not necessarily the only thing that affects its performance. Kids’ organs are simply not as efficient as those of adults. In drug modeling, if we assume that size is the only thing that matters, we might end up giving too large of doses,’ explains Eero Siivola, first author of the study and doctoral student at Aalto University. 

Whereas the standard approach of assessing pediatric data relies on subjective evaluations of model diagnostics, the new approach, based on Gaussian process regression, is more data-driven and consequently less prone to bias. It is also better at handling small sample sizes as uncertainties are accounted for.

The research comes out of FCAI’s research programme on Agile probabilistic AI, offering a great example of a method that makes the best out of even very scarce datasets.

In the study, the researchers demonstrate their approach by re-analyzing a pediatric trial investigating Everolimus, a drug used to prevent the rejection of organ transplants. But the possible benefits of their method are far reaching.

‘It works for any drug whose concentration we want to examine,’ Vehtari says, like allergy and pain medication.

The approach could be particularly useful for situations where a new drug is tested on a completely new group -- of children or adults -- which is small in size, potentially making the trial phase much more efficient than it currently is. Another promising application relates to extending use of an existing drug to other symptoms or diseases; the method could support this process more effectively than current practices.    

The paper will be published on May 10 in the journal Statistics in Medicine, already available online.

Link to original publication (Wiley Online Library)

Further information:

Doctoral Candidate Eero Siivola
+358 44 393 3935
[email protected]

Associate Professor Aki Vehtari
+358 40 533 3747
[email protected]

Finnish Center for Artificial Intelligence

The Finnish Center for Artificial Intelligence FCAI is a research hub initiated by Aalto University, the University of Helsinki, and the Technical Research Centre of Finland VTT. The goal of FCAI is to develop new types of artificial intelligence that can work with humans in complex environments, and help modernize Finnish industry. FCAI is one of the national flagships of the Academy of Finland.

Read more
FCAI
  • Published:
  • Updated:
Share
URL copied!

Read more news

Päivi Törmä ja Sebastiaan van Dijken
Press releases, Research & Art Published:

Guiding spin waves with light could lead to faster and much more energy efficient computing

Major new research project at Aalto University aims to develop new type of computing device that eliminates massive amounts of waste heat produced by current devices
Physicists at Aalto University and VTT have developed a new detector for measuring energy quanta at unprecedented resolution. Photo: Aalto University
Press releases Published:

Researchers will use the world’s most accurate radiation detector in quantum computers

Professor Mikko Möttönen’s team and their partners have acquired funding to refine the bolometer technology for use not only in quantum computers but also in ultralow-temperature (ULT) freezers and terahertz cameras. The funding is from the Future Makers Funding Program by Technology Industries Finland Centennial Foundation and by Jane and Aatos Erkko Foundation. This would be the first time ever that this bolometer is utilized for practical applications.
Schematic view of the entangled photon generator. Picture: Ethan D. Minot.
Press releases Published:

Groundbreaking light sources can increase effectiveness and security of transferring quantum information

Researchers at Aalto University plan to build a revolutionary LED light source to generate entangled photon pairs. The research group led by Professor Pertti Hakonen has received three-year funding from the Future Makers Funding Program of Technologies Finland Centennial Foundation and Jane and Aatos Erkko Foundation.
Image depicts a white wall with the words IV Konehuone OLO sprayed on it in red, referring that the engine room for AC is that way.
Campus, Press releases, University Published:

Aalto University announces two art competitions for a campus block under construction

The competitions seek for artworks to be placed in Aalto Works block, currently under construction