News

Researchers develop better way to determine safe drug doses for children

New research on organ maturation models could lead to improvements in drug development
Lääkäri juttelee lapsen kanssa
Image: Matti Ahlgren

Determining safe yet effective drug dosages for children is an ongoing challenge for pharmaceutical companies and medical doctors alike. A new drug is usually first tested on adults, and results from these trials are used to select doses for pediatric trials. The underlying assumption is typically that children are like adults, just smaller, which often holds true, but may also overlook differences that arise from the fact that children’s organs are still developing.

Compounding the problem, pediatric trials don’t always shed light on other differences that can affect recommendations for drug doses. There are many factors that limit children’s participation in drug trials – for instance, some diseases simply are rarer in children– and consequently, the generated datasets tend to be very sparse. 

To make drugs and their development safer for children, researchers at Aalto University and the pharmaceutical company Novartis have developed a method that makes better use of available data.

‘This is a method that could help determine safe drug doses more quickly and with less observations than before,’ says co-author Aki Vehtari, anassociate professor of computer scienceat Aalto University and the Finnish Center for Artificial Intelligence FCAI.

In their study, the research team created a model that improves our understanding of how organs develop. 

‘The size of an organ is not necessarily the only thing that affects its performance. Kids’ organs are simply not as efficient as those of adults. In drug modeling, if we assume that size is the only thing that matters, we might end up giving too large of doses,’ explains Eero Siivola, first author of the study and doctoral student at Aalto University. 

Whereas the standard approach of assessing pediatric data relies on subjective evaluations of model diagnostics, the new approach, based on Gaussian process regression, is more data-driven and consequently less prone to bias. It is also better at handling small sample sizes as uncertainties are accounted for.

The research comes out of FCAI’s research programme on Agile probabilistic AI, offering a great example of a method that makes the best out of even very scarce datasets.

In the study, the researchers demonstrate their approach by re-analyzing a pediatric trial investigating Everolimus, a drug used to prevent the rejection of organ transplants. But the possible benefits of their method are far reaching.

‘It works for any drug whose concentration we want to examine,’ Vehtari says, like allergy and pain medication.

The approach could be particularly useful for situations where a new drug is tested on a completely new group -- of children or adults -- which is small in size, potentially making the trial phase much more efficient than it currently is. Another promising application relates to extending use of an existing drug to other symptoms or diseases; the method could support this process more effectively than current practices.    

The paper will be published on May 10 in the journal Statistics in Medicine, already available online.

Link to original publication (Wiley Online Library)

Further information:

Doctoral Candidate Eero Siivola
+358 44 393 3935
[email protected]

Associate Professor Aki Vehtari
+358 40 533 3747
[email protected]

Finnish Center for Artificial Intelligence

The Finnish Center for Artificial Intelligence FCAI is a research hub initiated by Aalto University, the University of Helsinki, and the Technical Research Centre of Finland VTT. The goal of FCAI is to develop new types of artificial intelligence that can work with humans in complex environments, and help modernize Finnish industry. FCAI is one of the national flagships of the Academy of Finland.

Read more
FCAI
  • Published:
  • Updated:

Read more news

Nikos Makris in Helsinki, photo by Tiina Aulanko-Jokirinne
Research & Art Published:

Nikos Makris: Our common scientific goal is to understand how the brain works using multi-modal neuroimaging

'I feel extremely comfortable. I don’t see anybody judging and I have total freedom of speech.'
Two people outdoors with one holding a yellow frisbee-like object. One wears a white coat, the other a blue shirt.
Press releases Published:

'We cannot solve today’s complex challenges with traditional approaches' –– dozens of Finnish organisations support Aalto's radical creativity initiative

Aalto University launches a free online course to make the basics of radical creativity accessible to all
“I did not have a particular interest in nutrients to begin with, I just wanted to do something 
sustainable for the environment, but technical at the same time,” says Juho Uzkurt Kaljunen, 
winner of the award for the best doctoral thesis of the year. Photo: Jari Härkönen
Awards and Recognition Published:

Juho Uzkurt Kaljunen receives TEK’s and TFiF’s best dissertation award

The doctoral thesis written by Doctor of Science in Technology Juho Uzkurt Kaljunen improves the recovery of nutrients from wastewater and bringing them to market.
talvinen kuva Otarannasta kaisloineen
Research & Art, Studies Published:

Yearly follow-up of doctoral students open until 16.12.2024

What is the status of your doctoral studies and research? Answer the survey for un update.