News

Researchers create the most water-repellent surface ever

Revised method to create hydrophobic surfaces has implications for any technology where water meets a solid surface, from optics and microfluidics to cooking
Liukas pinta
Liquid-like surfaces are a new type of droplet-repellent surface that offer many technical benefits over traditional approaches. Image: Ekaterina Osmekhina

Researchers have developed a new mechanism to make water droplets slip off surfaces, described in a paper published in Nature Chemistry. The discovery challenges existing ideas about friction between solid surfaces and water and opens up a new avenue for studying droplet slipperiness at the molecular level. The new technique has applications in a range of fields, including plumbing, optics, and the auto and maritime industries.

All around us, water is always interacting with solid surfaces. Cooking, transportation, optics and hundreds of other applications are affected by how water sticks to surfaces or slides off them. Understanding the molecular dynamics of these microscopic droplets helps scientists and engineers find ways to improve many household and industrial technologies.

Liquid-like surfaces are a new type of droplet-repellent surface that offer many technical benefits over traditional approaches—a topic recently reviewed in Nature Reviews Chemistry by Aalto University Professor Robin Ras. They have molecular layers that are highly mobile yet covalently tethered to the substrates, giving solid surfaces a liquid-like quality acting like a layer of lubricant between the water droplets and the surface itself. A research team led by Ras used a specially-designed reactor to create a liquid-like layer of molecules, called self-assembled monolayers (SAMs), on top of a silicon surface.

Watching self-assembled monolayers grow

‘Our work is the first time that anyone has gone directly to the nanometer-level to create molecularly heterogenous surfaces,’ says doctoral researcher Sakari Lepikko, lead author of the study.

By carefully adjusting conditions such as temperature and water content inside the reactor, the team could fine-tune how much of the silicon surface the monolayer covered.

“I find it very exciting that by integrating the reactor with an ellipsometer, that we can watch the self-assembled monolayers grow with extraordinary level of detail,” says Ras.

‘The results showed more slipperiness when SAM coverage was low or high, which are also the situations when the surface is most homogeneous. At low coverage, the silicon surface is the most prevalent component, and at high, SAMs are the most prevalent.’

‘It was counterintuitive that even low coverage yielded exceptional slipperiness,’ Lepikko continues.

At low coverage, the water becomes a film over the surface, which had been thought to increase the amount of friction. ‘We found that, instead, water flows freely between the molecules of the SAM at low SAM coverage, sliding off the surface. And when the SAM coverage is high, the water stays on top of the SAM and slides off just as easily. It’s only in between these two states that water adheres to the SAMs and sticks to the surface.”

The new method proved exceptionally effective, as the team created the slipperiest liquid surface in the world.

Anti-fogging, de-icing, self-cleaning

The discovery promises to have implications wherever droplet-repellent surfaces are needed. According to Lepikko, this covers hundreds of examples from daily life to industrial solutions.

‘Things like heat transfer in pipes, de-icing and anti-fogging are potential uses. It will also help with microfluidics, where tiny droplets need to be moved around smoothly, and with creating self-cleaning surfaces. Our counterintuitive mechanism is a new way to increase droplet mobility anywhere it’s needed,’ Lepikko says.

Next, the team plans to continue experimenting with their self-assembling monolayer setup and improve the layer itself. Lepikko is particularly excited about the information this work has provided for future innovations.

‘The main issue with a SAM coating is that it’s very thin, and so it disperses easily after physical contact. But studying them gives us fundamental scientific knowledge which we can use to create durable practical applications.’

The research used the national research infrastructure OtaNano was carried out by the Soft Matter and Wetting group at the Department of Applied Physics, which has also produced other pioneering water-repellent materials.

Researchers from the University of Jyväskylä also contributed to this study.

Ras also published this year in Nature Reviews Chemistry a deep-dive into omniphobic liquid-like surfaces (LLS) and their promising utility. These LLSs could enable novel applications due to their ability to control slip, friction and adhesion properties. 

Robin Ras

Robin Ras

Professor
Department of Applied Physics
  • Published:
  • Updated:

Read more news

Modern and Mesopotamian people experience love in a rather similar way. In Mesopotamia, love is particularly associated with the liver, heart and knees. Figure: Modern/PNAS: Lauri Nummenmaa et al. 2014, Mesopotamian: Juha Lahnakoski 2024.
Press releases Published:

We might feel love in our fingertips –– but did the Ancient Mesopotamians?

A multidisciplinary team of researchers studied a large body of texts to find out how people in the ancient Mesopotamian region (within modern day Iraq) experienced emotions in their bodies thousands of years ago, analysing one million words of the ancient Akkadian language from 934-612 BC in the form of cuneiform scripts on clay tablets.
Three white, folded paper structures of varying sizes and shapes arranged on a grey surface.
Cooperation, Press releases, Research & Art Published:

New origami packaging technology creates sustainable and eye-catching alternatives to conventional packing materials

Origami packaging enables completely new properties for cartonboard, making it an excellent alternative to, for example, plastic and expanded polystyrene in packaging. The aesthetics of the material have also garnered interest from designers.
Jose Lado.
Research & Art Published:

Quantum physics professor searches for exotic qubit alternatives with new European funding

Aalto University physics professor Jose Lado will use this funding to engineer a new type of topological quantum material that could have applications for quantum bit, or “qubit,” development for noise-resilient topological quantum computation.
Talvikki Hovatta with the dome protecting the telescope in the background.
Press releases, Research & Art Published:

Talvikki Hovatta wants to solve a mystery that has plagued astronomers for decades

A new receiver at the Metsähovi Radio Observatory and ERC funding from the European Research Council will enable research into the composition of relativistic jets launched by supermassive black holes