News

Researcher creates a controlled rogue wave in realistic oceanic conditions

The result can help in the
design of safer ships and offshore rigs

Potentially extremely dangerous realistic rogue waves can now be controlled and generated at will in laboratory environments. Video: Visa Noronen, Amin Chabchoub, Sebastian Röder

The 260-meter long German barge carrier MS München was lost mysteriously at sea in 1978. The final communication message was a garbled mayday message sent from the mid-Atlantic. Afterwards, only a few bits of wreckage were found, including an unlaunched lifeboat. The most accepted theory is that one or more rogue waves hit the MS München and damaged her.

Rogue waves - also called freak waves - are unusually large surface waves that occur in the ocean. People have usually reported them as having appeared suddenly or without warning, sometimes with tremendous force. A researcher from Aalto University has now learned how they may appear in realistic oceanic conditions.

'Potentially extremely dangerous realistic rogue waves can now be controlled and generated at will in laboratory environments, in similar conditions as they appear in the ocean. This will help us not only to predict oceanic extreme events, but also in the design of safer ships and offshore rigs. In fact, newly designed vessels and rig model prototypes can be tested to encounter in a small scale, before they are built, realistic extreme ocean waves. Therefore, initial plans may change, if models are not resistant enough to face suddenly occurring freak waves,' says Professor Amin Chabchoub from Aalto University.

Potentially extremely dangerous realistic rogue waves can now be controlled and generated at will in laboratory environments. Photo: Hamburg University of Technology

The birth of rogue waves can be physically explained through the modulation instability of water waves.  In mathematical terms, this phenomenon can be described through exact solutions of the nonlinear Schrödinger equation, also referred to as “breathers”. 

For a couple of years, the research team around Professor Chabchoub has already been able to create steered rogue waves in laboratory wave flumes. However, this has only succeeded in perfect regular wave conditions. In nature, this is rarely the case.

The article has been published in Physical Review Letters.

For more information:

Amin Chabchoub
Assistant Professor of Hydrodynamics, Department of Mechanical Engineering, Aalto University
[email protected]
https://scholar.google.com/citations?user=7YvggSEAAAAJ&hl=en

Article: Amin Chabchoub: Tracking breather dynamics in irregular sea state conditions. Physical Review Letters 2016. Link to the article

  • Published:
  • Updated:
Share
URL copied!

Read more news

image of a wooden pillar from little finlandia and the text time out
Research & Art Published:

Aalto University shakes up construction practices at the New European Bauhaus Festival in Brussels

The exhibition Time Out! will be on show in Brussels from 9 to 13 April 2024 as part of the NEB Festival.
Two of the awardees and their robotic arm all holding colorful mugs. Aalto Open Science Award, Honorary mention.
Awards and Recognition, Research & Art Published:

Aalto Open Science Award third place awardee 2023 – Intelligent Robotics Research Group with the Robotic Manipulation of Deformable Objects project

We interviewed the Intelligent Robotics Research Group with the Robotic Manipulation of Deformable Objects project, 3rd place awardees of the first Aalto Open Science Award.
Five Aalto University students around a table
Research & Art Published:

Read the Qual+ Newsletter

We are excited to welcome you to the second Qual+ Newsletter and continue bringing you new ways of looking at methods within management studies.
Picture of leaves in water.
Press releases Published:

Graduate Sustainability Competencies and Influence in the Workplace – Aalto University's Latest Research

Aalto University's Meeri Karvinen successfully defends her doctoral dissertation, February 2024.