News

Research result: The Sun’s magnetic field during the grand minimum is in fact at its maximum

During a time period of the Maunder Minimum type the magnetic field may hide at the bottom of the convection zone.

About 80 solar cycles seen from the surface, i.e. more than 1,000 years in solar time, modelled by means of a computer simulation. At 20-50 years in simulation time, a simulated grand minimum occurs, which in actual fact is the maximum of magnetic energy.

The study conducted by the Aalto University Department of Computer Science, the ReSoLVE Centre of Excellence and the Max Planck Institute for Solar System Research seeks explanation for the mechanisms underlying the long-term variation in solar activity. The research team comprised Maarit Käpylä, Petri Käpylä, Nigul Olspert, Axel Brandenburg, Jaan Pelt, Jörn Warnecke and Bidya B. Karak. The recently published study was carried out by running a global computer model of the Sun on Finland’s most powerful super computer over a period of six months.

‘The Sun has an 11-year cycle that involves, among other things, the occurrence and disappearance of sunspots. The phenomena that occur in the Sun – including the cycle – change with time, so the solutions need to be integrated over time. Short-term variation is not interesting for the purposes of studying the space climate, for example,’ says Maarit Käpylä, head of the DYNAMO team, who conducts astroinformatics or computational astrophysics and data-analysis at the Department of Computer Science.

As a result of the computation carried out, currently the world’s longest numerical simulation was created that produces a solar-like dynamo solution complete with its long-term variation.

‘The Sun as such is impossible to replicate on present-day computers – or those of the near future – due to its strong turbulence. And indeed we are not claiming that this modelling would really be the Sun. Instead, it is a 3D construction of various solar phenomena by means of which the star that runs our space climate can be better understood,’ Käpylä explains.

What exactly is a grand minimum?

The largest surprise of the study relates to the Sun’s silent periods known as grand minima, of which the Maunder Minimum is perhaps the best known. The solar magnetic field is thought to wither during it and be so weak as not being capable of generating sunspots or other activity.

‘In fact, the magnetic field is at its maximum during the Maunder Minimum. Thus far, we have only been able to examine what is visible on the solar surface, but simulations enable us to see below the surface.  During the Maunder Minimum, the magnetic field sinks to the bottom of the convection zone and is very strong there,’ says Käpylä

The outer layer of the Sun, the convection zone, is like a boiling kettle with its moving and heat-transferring bubbles, and this not only generates a magnetic field, but also makes the entire area turbulent.

Maarit Käpylä will start as an independent group leader at one of Europe’s leading solar research units, Max Planck Institute for Solar System Research, in the summer of 2016. The operations of the Aalto DYNAMO team at the ReSoLVE Centre of Excellence will continue under Käpylä’s direction, focusing on even larger simulations using graphical processing units.

More information:

Maarit Käpylä
Aalto University, Department of Computer Science
+358504301059
[email protected]

Article

 

  • Published:
  • Updated:
Share
URL copied!

Read more news

Future Digital Mobility Management
Research & Art Published:

Do you drive a car in metropolitan area? Come and test how to make motoring routes smoother and safer.

During the autumn, an international Code the Streets pilot will be implemented in metropolitan area, where motorists will be offered alternative driving routes with a navigator. We are now looking for testers for the navigation app who have an Android phone.
Ths picture shows Assistant Professor Ciprian Domnisoru and Professor, Nobel Laureate David Card.
Research & Art Published:

Research co-operation with a Nobel Laureate

According to Assistant Professor Ciprian Domnisoru, David Card is a meticulous, hard-working, kind, and fun co-author who often uses a Finnish painting as his Zoom background.
Speaker photos of How to win with platform strategy with Tero Ojanperä, Bengt Holmström, Timo Vuori, Maija Hovila, Matias Järnefelt, Michael Tushman
Research & Art Published:

Recording and Q&A now available from the Platform Strategy Seminar 5 October, 2021

The Aalto University seminar "How to Win with Platform Strategy" with top experts from MIT, Harvard, Aalto University, and industry took place on 5 October, 2021 both online and onsite at Aalto campus in Espoo. On this page you can find the recording of the event and Q&A.
Kimchi and Chips
Research & Art Published:

Artist talk: Kimchi and Chips

We are pleased to welcome you to an artist talk by Kimchi and Chips!