News

Quantum-mechanical monopoles discovered

Researchers at Aalto University and Amherst College, USA, have observed a point-like monopole in a quantum field itself for the first time.
Image of an experimentally created Bose–Einstein condensate containing the monopole (left) and the corresponding theoretical prediction (right). Brighter area has higher particle density and the different colors denote the internal spin state of the atoms. The monopole is located in the center of the condensate.

This discovery connects to important characteristics of the elusive monopole magnet. The results were just published in Science magazine.

The researchers performed an experiment in which they manipulated a gas of rubidium atoms prepared in a nonmagnetic state near absolute zero temperature. Under these extreme conditions they were able to create a monopole in the quantum-mechanical field that describes the gas.

‘In this nonmagnetic state, a structure was created in the field describing the gas, resembling the magnetic monopole particle as described in grand unified theories of particle physics. Previously, we have used the gas to detect a monopole within a so-called synthetic magnetic field, but there has been no monopole in the quantum field describing the gas itself. Now we have finally witnessed the quantum-mechanical monopole!’, enthuses Dr. Mikko Möttönen, Aalto University.

‘In the nonmagnetic state of the gas, no quantum whirlpools or monopoles are created in the synthetic magnetic field. However, quantum-mechanical magnetic order prevails in the sample, and we were able to manipulate this with adjustments to an externally applied magnetic field’, Möttönen continues.

‘The control of those magnetic fields must be stable to a small fraction of the size of the Earth's magnetic field’, adds Prof. David Hall, Amherst College. 'The main experimental challenge we faced is to prepare the ultracold gas under highly sensitive conditions, in which field fluctuations due to the motion of metal objects or power line variations can make observation of the monopoles difficult.', Hall continues.

The result is a remarkable step forward in quantum research. It is important to understand the structure of monopoles and other topological entities, in part because they appear in the models describing the early universe and affect the properties of many different materials, such as metals.

The discovery of a magnetic monopole particle is still in the future. This new result establishes that the structure of a quantum mechanical monopole does appear in nature, and therefore it further supports the possibility that magnetic monopoles exist.

Science article: M. W. Ray, E. Ruokokoski, K. Tiurev, M. Möttönen, and D. S. Hall
”Observation of isolated monopoles in a quantum field”
Science, DOI: 10.1126/science.1258289 (2015).
Link: http://doi.org/10.1126/science.1258289

See also the previous work of the team on a monopole in a synthetic classical-like field:
Observation of Dirac Monopoles in a Synthetic Magnetic Field”, Nature 505, 657 (2014).

Contact details:

Mikko Möttönen, Docent, Dr.
Aalto University
Department of Applied Physics, QCD Labs
email: mikko.mottonen*at*aalto.fi
m. +358 50 594 0950
http://physics.aalto.fi/qcd/

Mikko Möttönen is the leader of the theoretical and computational part of the research. Theoretical ideas and computational modelling was very important for the success of the creation of the monopole. The modelling was carried out using the facilities at CSC — IT Center for Science Ltd and at Aalto University (Aalto Science-IT project).

David S. Hall, Professor
Amherst College
Department of Physics
Email: dshall*at*amherst.edu
p. +1 413 542 2072
http://www3.amherst.edu/~halllab/

David S. Hall is the leader of the experimental part of the research. The isolated monopoles were created in the Physics Laboratories at Amherst College, United States of America.

Funding: This material is based upon work supported by the National Science Foundation, the Academy of Finland, Finnish Doctoral Programme in Computational Sciences and the Magnus Ehrnrooth Foundation.

  • Published:
  • Updated:

Read more news

Nesteen polttoainejalostamon tankit Porvoossa
Cooperation, Research & Art Published:

Collaboration with Aalto brings significant financial benefits to Neste

As a result of the collaboration, Neste is now using digital tools in its fuel research alongside traditional testing.
Research & Art Published:

Testing virtual library card

Testing virtual library card
Nighttime picture of a snowy road lined with trees.
Press releases Published:

Snap, crackle, pop! — the sounds of frost actually come from the sky

Breakthrough research reveals that the popping sound associated with frost is in fact mostly coming from the atmosphere.
Professor Riikka Puurunen, Professor Patrick Rinke and IT Application Owner Lara Ejtehadian holding sunflowers and diplomas
Awards and Recognition, Campus, Research & Art Published:

Aalto Open Science Award ceremony brought together Aaltonians to discuss open science

Last week we gathered at A Grid to celebrate the awardees of the Aalto Open Science Award 2023 and discuss open science matters with the Aalto community.