News

Promising results obtained with a new electrocatalyst that reduces the need for platinum

Researchers succeeded in manufacturing electrocatalysts with one hundredth of the amount of platinum that is usually needed.

DFT (density functional theory) suggests that carbon nanotubes stabilize single platinum atoms and that hydrogen evolution reaction takes place more efficiently on their surfaces, compared to conventional platinum nanoparticles.

Platinum is a very expensive metal and it is therefore one of the bottlenecks hindering the growth of renewable energy. Platinum is used as the catalyst in electrolysers that store electric energy as chemical compounds, and it also plays an important role in fuel cells, catalytic converters and many chemical processes used in industry.

A group of Aalto University researchers led by professors Tanja Kallio and Kari Laasonen has developed a manufacturing method for electrocatalysts that only uses one hundredth of the amount of platinum generally used in commercial products. The activity achieved using the new material is similar to that of commercial electrocatalysts. The method is based on the special characteristics of carbon nanotubes.

‘When platinum is electrodeposited on the surface of carbon nanotubes, it forms particles consisting of a couple of atoms. On other materials, such as graphene, platinum forms larger nanoparticles’, Tanja Kallio explains.

‘We believe this is because the carbon atoms of the curved surface are in a strained state, which makes them prone to stabilising platinum on the surface of the nanotube. This ensures that the platinum atoms form small and catalytically active particles. Our modelling showed that the more strained the carbon bonds are, the better the stabilisation of the platinum. Smaller tubes are more curved, which makes the strain greater, so the diameter of the nanotubes is also important.’

TEM (tunneling electron microscope) image of a carbon nanotube decorated with platinum clusters (bright color).

One third of the price

Electrolysers store electrical energy in the form of hydrogen bond energy. In practice, this mechanism is used to store fluctuating energy, such as wind energy, and balance the difference between demand and production. Since the electrocatalyst forms approximately one third of the price of the electrolyser, reducing the amount of platinum needed would make the process significantly less expensive.

‘In addition to the price of platinum, the availability of the metal is also a problem. Platinum is on the EU list of critical raw materials, which means that its use is problematic either due to its scarceness or due to geopolitical problems. This is why the EU is aiming to reduce the use of platinum’, Kallio says and emphasises that so far the functionality of the electrocatalyst developed at Aalto University has only been proven in laboratory conditions.

‘In small-scale conditions and at room temperature, the electrocatalyst is stable and usable for a long time. The next step is to increase the scale of production and test the functionality of the electrocatalyst in practical applications, which are often carried out at a higher temperature.’

The research results have just been published in the scientific journal ACS Catalysis. Link to the article (pubs.acs.org)

Further information:

Professor Tanja Kallio
tel. +358 50 563 7567
[email protected]

Professor Kari Laasonen (modelling)
tel. +358 40 557 0044
[email protected]

  • Published:
  • Updated:

Read more news

image of a wooden pillar from little finlandia and the text time out
Research & Art Published:

Aalto University shakes up construction practices at the New European Bauhaus Festival in Brussels

The exhibition Time Out! will be on show in Brussels from 9 to 13 April 2024 as part of the NEB Festival.
Two of the awardees and their robotic arm all holding colorful mugs. Aalto Open Science Award, Honorary mention.
Awards and Recognition, Research & Art Published:

Aalto Open Science Award third place awardee 2023 – Intelligent Robotics Research Group with the Robotic Manipulation of Deformable Objects project

We interviewed the Intelligent Robotics Research Group with the Robotic Manipulation of Deformable Objects project, 3rd place awardees of the first Aalto Open Science Award.
Five Aalto University students around a table
Research & Art Published:

Read the Qual+ Newsletter

We are excited to welcome you to the second Qual+ Newsletter and continue bringing you new ways of looking at methods within management studies.
Picture of leaves in water.
Press releases Published:

Graduate Sustainability Competencies and Influence in the Workplace – Aalto University's Latest Research

Aalto University's Meeri Karvinen successfully defends her doctoral dissertation, February 2024.