News

Promising news from biomedicine: DNA origami more resilient than previously understood

Study shows these nanostructures can survive in extremely low magnesium concentrations, opening up a broad spectrum of biophysical and biomedical applications

DNA origami nanostructures (green triangles) survive although magnesium concentration is drastically decreased from fabrication conditions. Image: Boxuan Shen and Veikko Linko

The DNA origami technique is a widely used method for making complex, yet well-defined nanostructures, with applications in biophysics, molecular biology, as well as drug and enzyme delivery. A major challenge, however, has been in achieving long-lasting stability under the conditions required for these applications.

Until now, the technique has required high concentrations of magnesium well above those found in the human body.

"Conventional DNA origami assembly requires levels of magnesium easily 10-30 times as high as those in normal physiological conditions. With our method, we can go below one thousandth of the minimum magnesium concentration previously reported," says Adjunct Professor Veikko Linko from Aalto University, who co-led the study with Dr. Adrian Keller of Paderborn University.

Key to the gentle buffer exchange method developed by the researchers is removing free ions from the buffer solution efficiently but not all residual magnesium from the nanostructures. Previous research has identified low magnesium levels as one of the most critical parameters that reduce DNA origami stability in cell culture media.

"We found – quite surprisingly – that just Tris and pure water worked well with low-magnesium levels for all types of structures," explains Linko. 

Tris is a common component of buffer solutions used, for example, in biochemistry applications.  Findings show that phosphate-based buffers with a high enough concentration of sodium or potassium can also stabilize DNA origami.

The study investigated the stability of quasi-one-dimensional, two-dimensional and three-dimensional DNA origami objects. The nanostructures achieved using the technique showed strong structural integrity, maintained even for extended periods of time.

"We can store the structures in low-magnesium conditions for weeks and even months without seeing any structural defects. These findings might pave the way for a plethora of biomedical uses that were previously thought impossible, as for example fluorophores and many enzymes are sensitive to magnesium levels," envisions Linko.

The researchers further observed that the more tightly packed the helices in their DNA objects were, the more sensitive they were to the environment in low-magnesium conditions. This suggests that the stability of DNA origami can be enhanced through the optimization of the design procedure.

The results have been published in Angewandte Chemie International Edition and the article has been selected as a “Hot Paper”.

“On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers”
Angewandte Chemie International Edition 2018
DOI: 10.1002/acie.201802890

http://dx.doi.org/10.1002/anie.201802890

The research has been funded by Academy of Finland, Jane and Aatos Erkko Foundation, the Sigrid Jusélius Foundation and Deutsche Forschungsgemeinschaft.

More information:

Adjunct Professor Veikko Linko

Biohybrid Materials Group, Aalto University School of Chemical Engineering, Finland
tel. +358 45 673 9997
[email protected]

  • Published:
  • Updated:
Share
URL copied!

Read more news

image of a wooden pillar from little finlandia and the text time out
Research & Art Published:

Aalto University shakes up construction practices at the New European Bauhaus Festival in Brussels

The exhibition Time Out! will be on show in Brussels from 9 to 13 April 2024 as part of the NEB Festival.
Two of the awardees and their robotic arm all holding colorful mugs. Aalto Open Science Award, Honorary mention.
Awards and Recognition, Research & Art Published:

Aalto Open Science Award third place awardee 2023 – Intelligent Robotics Research Group with the Robotic Manipulation of Deformable Objects project

We interviewed the Intelligent Robotics Research Group with the Robotic Manipulation of Deformable Objects project, 3rd place awardees of the first Aalto Open Science Award.
Five Aalto University students around a table
Research & Art Published:

Read the Qual+ Newsletter

We are excited to welcome you to the second Qual+ Newsletter and continue bringing you new ways of looking at methods within management studies.
Nanoselluloosaa
Cooperation, Research & Art Published:

Aalto focuses on pulp research to boost a shift to a low carbon economy

A ground-breaking research programme together with universities, research organizations, and companies is established to reform the traditional pulping processes. As the target of the programme is industrial scale relevance, it requires a pool of scientists and the industry to work together internationally.