News

New Industry partnership for solid-state cooling

Comptek Solutions and Aalto University’s Engineered Nanosystems group launch the SuperDevice project to study the effects of controlled oxidation on defected surfaces in optical cooling devices
Some of the samples made by the group
ELC Devices made at Aalto. Photo Credit: Aalto University

Electroluminescent cooling (ELC) is an effect that appears when efficient light emission from an electrically injected light emitting diode (LED) leads to its cooling. The effect has been known for decades, but its demonstration at practical operating powers has been challenging. Researchers at the Aalto university are partnering with Finnish semiconductor producers Comptek Solutions to try to overcome these challenges.

Studies by Jani Oksanen’s research group in Aalto University have suggested that the electronic properties of the material can affect how effective it is at cooling. ‘Surface recombination at the mesa edges is an important bottleneck for observing the effect at small and intermediate current densities,’ said Dr Okansen, ‘it also plays a major role in enabling optical coolers to operate at high powers while maintaining extremely high efficiency. To design ELC devices for real-world uses, we would need a material with minimal surface recombination.’

Kontrox™ is an atomic level surface engineering technology developed by Comptek Solutions. It produces good quality, high symmetry, stable oxide structure on the surfaces of semiconductor materials. During the SuperDevice project, the effects of Kontrox will be studied in thermophotonic applications where complete elimination of all device losses is required.

As an industrial partner, Comptek Solutions will provide the facilities and research infrastructure to work on GaAs based optical cooler prototypes investigated at Aalto University.

Project SuperDevice aims to demonstrate the feasibility of Kontrox in enabling the hard-to-reach effect of ELC. This will have significant impact on global industry, and on allowing the design of new prototype structures utilizing the paradigm shift enabled by the near-zero surface recombination.

The project enables a mutually beneficial case study of using controlled oxidation in state-of-the-art compound semiconductor devices, potentially overcoming the limitations slowing down the development of optical cooling technologies that may later revolutionize solid state and general cooling applications.

Contact

Jani Oksanen
Aalto University
[email protected]

  • Published:
  • Updated:

Read more news

image of a wooden pillar from little finlandia and the text time out
Research & Art Published:

Aalto University shakes up construction practices at the New European Bauhaus Festival in Brussels

The exhibition Time Out! will be on show in Brussels from 9 to 13 April 2024 as part of the NEB Festival.
Two of the awardees and their robotic arm all holding colorful mugs. Aalto Open Science Award, Honorary mention.
Awards and Recognition, Research & Art Published:

Aalto Open Science Award third place awardee 2023 – Intelligent Robotics Research Group with the Robotic Manipulation of Deformable Objects project

We interviewed the Intelligent Robotics Research Group with the Robotic Manipulation of Deformable Objects project, 3rd place awardees of the first Aalto Open Science Award.
Five Aalto University students around a table
Research & Art Published:

Read the Qual+ Newsletter

We are excited to welcome you to the second Qual+ Newsletter and continue bringing you new ways of looking at methods within management studies.
Picture of leaves in water.
Press releases Published:

Graduate Sustainability Competencies and Influence in the Workplace – Aalto University's Latest Research

Aalto University's Meeri Karvinen successfully defends her doctoral dissertation, February 2024.