News

New forecasting tool can give an early warning of solar storms – boosts preparedness and helps mitigate damage

Associate Professor Maarit Korpi-Lagg has received funding from the European Research Council to develop a forecasting tool to locate the source regions for the eruption of solar flares already a few days before they emerge on the Sun’s surface.
Illustration of a solar flare, spat out from the Sun's surface.
Solar flares can reach velocities of up to several million kilometres per hour. Illustration: Matti Ahlgren/Aalto University

The Earth is constantly bombarded by a stream of particles from the Sun, called solar wind. This stream can escalate into storms, which are born from massive solar flares spewed out from the Sun’s highly magnetised active regions. When strong solar storms hit Earth, they can have massive repercussions for telecommunications, global positioning systems and electrical grids.

In July 2012, the most severe solar flare in 150 years was spat out by the Sun. Fortunately, the resulting solar storm missed Earth. Had it been directed toward us; it would have had the potential to leave societies and the global economy in shatters and taken years to recover from.

‘Only the worst solar storms are a real threat to human life. However, the costs of fixing damages and shielding our digitalized infrastructure from them, are very high,’ says Maarit Korpi-Lagg, associate professor at Aalto University.

Korpi-Lagg is developing tools for short and long-term forecasting of solar active regions with her astroinformatics research group. They have just received the Proof of Concept grant from the European Research Council (ERC) for their Solar cycle predition tool using solar internal oscillations (SYCOS) project. The funding is given to research that aims to harness basic research to be used for the benefit of society.

‘The forecasting tools we’ll be developing in the new project will make our societies less vulnerable to bad space weather and help save resources in building damage-prevention capacity,’ says Korpi-Lagg.

Muotokuva professori Maarit Korpi-Laggista
‘The forecasting tools we’ll be developing in the new project will make our societies less vulnerable to bad space weather and help save resources in building damage-prevention capacity,’ says Korpi-Lagg. Image: Matti Ahlgren/Aalto University

Preparing for the worst

Solar activity runs in 11-year cycles and the next peak is estimated to be around 2025. Modern methods focus on monitoring the Sun’s surface activity, giving little lead time to prepare for solar storms, which can travel through space at extremely high velocities.

‘Currently, solar flares and adverse space weather can only be evaluated after active areas emerge on the Sun’s surface. At this point, it might be too late to mount an efficient response or manage risks on Earth,’ says Korpi-Lagg.

Her research group has developed an alternative forecasting method by focusing on the location and properties of the magnetic fields below the Sun’s surface.

‘Observing the location and topology of sub-surface magnetic fields helps us predict the formation of active regions a few days prior to current methods. This method will greatly enhance the predictability and preparedness for fast-moving space weather phenomena, potentially enroute to the Earth’s magnetosphere,’ says Korpi-Lagg.

The fresh funding will enable the team to develop the open-source forecasting tools and to the recruitment more data analysis and machine learning expertise. Korpi-Lagg’s research group is working in close cooperation with the Max Planck Institute for Solar System Research (MPS) in the new project. The project leans heavily on the basic research project, in which the research group, together with MPS, developed a novel method to observe sub-surface magnetic fields indirectly – a feat that wasn’t possible before.

Putting solar data in its place

Solar data are vast and complex. To analyse and understand the data, researchers need to complement their models and knowledge with high-performance computing capacity as well as machine learning.

‘The tools we’re developing in the new project can orchestrate the whole forecasting process from start to finish: oscillation data – meaning the way the Sun’s internal waves fluctuate – is gathered from databases around the world, analysed in real-time, and then our machine learning model is used to create a prediction of the Sun’s magnetic weather,’ Korpi-Lagg explains.

The research group’s aim is to integrate the open-source tool into existing forecasting systems in space weather stations to enhance our capabilities to mitigate the risks of bad space weather.

The European Research Council’s Proof of Concept grant is 150,000 euros. It is based on Associate Professor Maarit Korpi-Lagg’s ongoing basic research project, which received the two-million-euro ERC Consolidator grant in 2018.

  • Published:
  • Updated:
Share
URL copied!

Read more news

Close-up of a green battery with the text Battery must be Recycled or Disposed of properly
Press releases Published:

Success of BATCircle2.0 bolsters Finnish leadership in Li-ion battery supply chain

The Aalto-led collaboration between researchers and industry resulted in impressive research outputs
Tekstiiliperhonen, jonka siipiin on punottu valoon reagoivia säikeitä.
Press releases Published:

The butterly effect – bending and turning artificial muscles with light

In the future, the innovation could be used in for example the development of smart textiles, soft robotics and medicine.
From left: Taras Redchuk, Chris Hayes, Aakeel Wagay, Ada Pajari, Dan Noel, Eveliny Nery and Jarno Mäkelä. Photo: Mikko Raskinen.
Appointments Published:

‘Off to a flying start’ – a new research team explores bacteria that thrive in extreme conditions

Jarno Mäkelä joined Aalto’s Department of Neuroscience and Medical Engineering as Assistant Professor of Biophysics in early September, together with research fellow Taras Redchuk, postdoctoral researchers Dan Noel, Eveliny Nery, doctoral researchers Ada Pajari and Aakeel Wagay, and research assistant Chris Hayes. They were accompanied by equipment, funding from the Academy of Finland and an ERC Starting Grant from the European Research Council.
Aalto Industrial Internet Campus
Cooperation, Research & Art Published:

The physical and digital worlds of production and internal logistics meet in a multidisciplinary TwinFlow project

Researchers from Aalto University and the University of Tampere are collaborating with companies to accelerate the data-driven business in the manufacturing industry. The joint three-year project is funded by Business Finland.