News

Nature-imitating coating makes batteries more durable and efficient

Aalto University's researchers were the first in the world to make use of carbon dioxide in the production of a battery protective coating. In the future, the coating could multiply the battery life and enable the use of new, more efficient materials.
Nature-imitating coating, picture: Juho Heiska
The picture shows carbon nanotubes coated with a coating using carbon dioxide in molecular layer deposition.

When batteries are charged and used, a complex SEI (solid electrolyte interphase) layer is formed. Its structure resembles a mosaic consisting of organic and inorganic parts assembled from several blocks.

Researchers have noticed that if an artificial layer is applied to the electrode surface of a battery, the batteries can be recharged and used longer. The actual electrode material is saved when the separately added layer reacts and forms a protective SEI layer. The surface of an artificially produced SEI is also more even and of a higher quality than that of a naturally developed layer.

Inorganic materials, i.e. materials that do not contain carbon, have been used in the atomic layer deposition. Now, Aalto University's researchers have been the first in the world to produce a coating using carbon dioxide in molecular layer deposition.

‘We will make a coating that imitates a completely natural SEI layer and which we hope will protect the actual electrode material’, says doctoral candidate Juho Heiska.

In addition to increasing battery durability, the artificial SEI can also enable the use of new, more efficient electrode materials. The battery is always composed of two electrodes, each with its own characteristics that affect the performance of the battery.

‘It would be a jackpot, if batteries could use metallic lithium. If clean lithium metal could be used safely, it would significantly increase the capacity of batteries. With the help of an artificial SEI, this might be possible’, says Juho Heiska. Metal lithium can ignite the battery if it comes into contact with water or air. It is, therefore, challenging to use it in batteries.

The use of batteries is increasing rapidly in society, as, for example, electric vehicles become more common. Therefore, improving sustainability and efficiency are important for the environment.

‘Metal extraction is too cheap at the moment, which is why companies do not have the incentive to produce products with a longer life span. And consumers are not interested in paying more for batteries’, says Juho Heiska.

The study succeeded in building an organic part of SEI. Next, the researchers will test how the artificial coating now developed protects the battery.

The article was published in Nanoscale Advances in May 2020.

J. Heiska, M. Madadi and M. Karppinen, CO2-based atomic/molecular layer deposition of lithium ethylene carbonate thin films, Nanoscale Adv., 2020,2, 2441-2447. https://doi.org/10.1039/D0NA00254B

Further information:

Juho Heiska
Doctoral candidate
Inorganic chemistry
Department of Chemistry and Materials Science
Aalto University
Tel. + 358 41 4300792
[email protected]

  • Published:
  • Updated:
Share
URL copied!

Related news

The Olli V Lounasmaa Memorial Prize 2020 awarded to JC Séamus Davis
Cooperation, Honoured, Press releases Published:

Olli V. Lounasmaa Memorial Prize awarded to Professor J.C. Séamus Davis

The winner of the 2020 Olli V. Lounasmaa Memorial Prize tells us about his research in quantum materials
Kuvituskuva, jossa nukkuu mustahiuksinen nainen kännykkä vierellään yöpöydällä
Press releases Published:

Sleep apnea is a threat for public health - students developed an application that recognizes its signs at home

Diagnosing sleep apnea is laborious and expensive, so easy-to-use methods for screening and long-term follow-up are needed
Aivokuori seuraa äänen piirteitä hyvin täsmällisesti ymmärtääkseen puhetta. Kuva: Aalto-yliopisto
Press releases, Research & Art Published:

The human brain tracks speech more closely in time than other sounds

The way that speech processing differs from the processing of other sounds has long been a major open question in human neuroscience.
Violetti- ja beigesävyinen kuvituskuva, jossa näkyy ihmisiä ja numeroita
Press releases Published:

Artificial intelligence produces data synthetically to help treat diseases like COVID-19

The ability to produce data synthetically makes studying of the COVID-19 disease significantly easier.