News

Nanostructures can now be '3D printed’ using DNA

Three-dimensional nano-sized structures obtained from DNA using a new design method
3D printed models of DNA nanostructures synthesised in the research. Picture: Erik Benson.

Researchers from Aalto University and Karolinska Institutet in Stockholm have developed a method by means of which DNA can be folded to three-dimensional structures of virtually any shape. The method can be compared to nano-scale 3D printing.

The point of departure of the computational design method developed at the Aalto University Department of Computer Science is a mesh model of the targeted three-dimensional structure, the kinds of which are used in computer graphics and industrial design. The method makes it possible to represent the input model as DNA sequences that combine into the desired structure in a saline solution using the ‘DNA origami’ technique. Tests carried out in saline solutions of varying concentrations confirm that the designed DNA strands hybridise into the desired shapes even in saline solutions matching the natural low salt concentration of the body. The result has recently been published in the science journal Nature.

‘An advantage of the design method we have developed is that we were able to make the process entirely automatic to create even complex structures. Previous approaches to the generation of three-dimensional DNA structures have been based on manual work, and the structures created have been quite simple. I believe that advanced computing methods will be of major significance for the development of DNA nanotechnology when steps are taken to proceed from the scale of laboratory tests towards groundbreaking applications,’ says Professor Pekka Orponen from Aalto University.

The new method makes it possible to synthesise three-dimensional DNA structures of virtually any shape. The technology is of immediate use to basic research in cell biology and, in the more distant future, to the development of smart drugs, for example, and of biosensor molecules with applications in monitoring the condition of the body or the environment.

‘For biological use, we need structures that fold in and retain their shape not only in a laboratory setting but also in physiological saline solutions. The new synthesis and design method also makes more effective use of the DNA material than the previous approaches, making it possible to synthesise increasingly complex structures,’ says leader of the study, Professor Björn Högberg from Karolinska Institutet.

The structures generated using the method are 20 to 100 nanometres (one-millionth of a millimetre) in diameter. By way of comparison, the human hair is around 50,000 nanometres in diameter. Using the new technology, the researchers constructed a nano-sized sphere, rod, helical spiral and bottle, for example, and a DNA-printed version of the Stanford Bunny model, a test structure frequently used in 3D modelling.

To carry out the computation, the team at the Department of Computer Science utilised the computer capacity of the Triton computing cluster of the Aalto University School of Science.

For more information:

Professori Pekka Orponen
[email protected]
puh. 0500 819491
Department of Computer Science
Aalto University Scool of Science

  • Published:
  • Updated:

Read more news

People at the campus
Cooperation, Research & Art Published:

Aalto University to host CESAER Task Force Openness of Science and Technology

Aalto University is proud to host the CESAER Task Force Openness of Science and Technology on 16–17 April 2024.
Otaniemi seafront pictured in the summer with the Aalto logo and event title, and VTT and Open Science logos overlayed.
Campus, Cooperation, Research & Art Published:

Open Science and Research Summer Conference 2024 will be hosted by Aalto University

Aalto University is co-organising the Open Science and Research Summer Conference 2024 with the National Coordination of Open Science and Research, and VTT.
Two hexagonal arrays of prisms with a blue lattice inbetween.
Research & Art Published:

New quantum entangled material could pave way for ultrathin quantum technologies

Researchers reveal the microscopic nature of the quantum entangled state of a new monolayer van der Waals material
Cone Calorimeter Testing
Research & Art Published:

BIOSUOJA project is saving lives by developing bio-based fire retardant coatings

A talented group of young researchers is making these non-toxic coatings out of wood.