News

Light detector with record-high sensitivity to revolutionize imaging

Researchers at Aalto University reach near-unity response ranging from ultraviolet to infrared.

Structure and performance of the novel photodetector

The research team led by Professor Hele Savin has developed a new light detector that can capture more than 96 percent of the photons covering visible, ultraviolet and infrared wavelengths.

“Present-day light detectors suffer from severe reflection losses as currently used antireflection coatings are limited to specific wavelengths and a fixed angle of incidence. Our detector captures light without such limitations by taking advantage of a nanostructured surface. Low incident angle is useful especially in scintillating x-ray sensors”, Savin explains.

Our detector does not need any dopants to collect light – instead we use an inversion layer generated by atomic layer deposited thin film.

“We also addressed electrical losses present in traditional sensors that utilize semiconductor pn-junctions for light collection. Our detector does not need any dopants to collect light – instead we use an inversion layer generated by atomic layer deposited thin film.”

The new concept for light detection kindled from the team’s earlier research on nanostructured solar cells. Indeed, the nanostructure used in the light detector is similar to that used by the team a couple of years ago in their record-high efficiency black silicon solar cells.

The team has filed a patent application for the new light detector. The prototype detectors are currently being tested in imaging applications related to medicine and safety. The team is also continuously seeking new applications for their invention, especially among the ultraviolet and infrared ranges that would benefit from the superior spectral response.

The research results were published 14.11.2016 in Nature Photonics scientific journal.
Link to the article

Further information:

Professor Hele Savin
Tel. +358 50 541 0156
[email protected]

Senior Scientist Mikko Juntunen
Tel. +358 40 8609 663
[email protected]

Read also: Efficiency record for black silicon solar cells jumps to 22.1%

  • Published:
  • Updated:

Read more news

Modern and Mesopotamian people experience love in a rather similar way. In Mesopotamia, love is particularly associated with the liver, heart and knees. Figure: Modern/PNAS: Lauri Nummenmaa et al. 2014, Mesopotamian: Juha Lahnakoski 2024.
Press releases Published:

We might feel love in our fingertips –– but did the Ancient Mesopotamians?

A multidisciplinary team of researchers studied a large body of texts to find out how people in the ancient Mesopotamian region (within modern day Iraq) experienced emotions in their bodies thousands of years ago, analysing one million words of the ancient Akkadian language from 934-612 BC in the form of cuneiform scripts on clay tablets.
Three white, folded paper structures of varying sizes and shapes arranged on a grey surface.
Cooperation, Press releases, Research & Art Published:

New origami packaging technology creates sustainable and eye-catching alternatives to conventional packing materials

Origami packaging enables completely new properties for cartonboard, making it an excellent alternative to, for example, plastic and expanded polystyrene in packaging. The aesthetics of the material have also garnered interest from designers.
Jose Lado.
Research & Art Published:

Quantum physics professor searches for exotic qubit alternatives with new European funding

Aalto University physics professor Jose Lado will use this funding to engineer a new type of topological quantum material that could have applications for quantum bit, or “qubit,” development for noise-resilient topological quantum computation.
Talvikki Hovatta with the dome protecting the telescope in the background.
Press releases, Research & Art Published:

Talvikki Hovatta wants to solve a mystery that has plagued astronomers for decades

A new receiver at the Metsähovi Radio Observatory and ERC funding from the European Research Council will enable research into the composition of relativistic jets launched by supermassive black holes