News

It is all about water: thermal transitions in polyelectrolyte assemblies occur via a dehydration mechanism

Researchers have for the first time deduced the microscopic nature of the anomalous thermal transition that hydrated polyelectrolyte assemblies bear.

Polyelectrolyte multilayers, formed from the assembly of oppositely charged species from aqueous solutions, have long been known to possess an anomalous thermal transition signified by a dramatic decrease in modulus and increase in diffusion. This transition can be used in, e.g., designing smart, responsive coatings for energy or bioengineering applications such as drug transport. In the absence of a better word, the transition has been called a glass transition or a glass-melt transition. Researchers at Aalto University Department of Chemistry have for the first time deduced the microscopic nature of this transition based on molecular simulations and supporting experimental evidence.

Figure 1: Cartoon of the role of water in the thermal transition of polyelectrolytes. The research work revealed the hydrogen bond life time and their number experiences a sudden decrease at the transition temperature. This indicates the polyelectrolytes are experiencing dehydration. Figure by Maria Sammalkorpi.

The research team led by Dr. Maria Sammalkorpi, Aalto University, in collaboration with Dr. Jodie Lutkenhaus, Texas A&M University, has shown the transition is actually driven by dehydration. This finding is significant because it reverses a prior assumption that the thermal transition in polyelectrolyte systems is related to disruption of polycation-polyanion bonds. Furthermore, the observed mechanism bears close resemblance to lower critical solution temperature (LCST)-type mechanism and connects thus polyelectrolyte materials with a broad range of synthetic and biological materials experiencing dehydration-driven thermal transitions. In total, the findings show water-polyelectrolyte interactions should be a focus in future design of thermoresponsive polyelectrolyte materials.

The findings have been published recently in ACS Macro Letters. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering. The work is part of an NSF Materials World Network collaboration project funded by Academy of Finland and NSF, USA.

Additional information:

Research group leader, Academy of Finland Research Fellow Maria Sammalkorpi, Department of Chemistry, Aalto University School of Chemical Technology
email: maria.sammalkorpi(at)aalto.fi

Original article:
Erol Yildirim, Yanpu Zhang, Jodie L. Lutkenhaus, and Maria Sammalkorpi, “Thermal Transitions in Polyelectrolyte Assemblies Occur via a Dehydration Mechanism“ ACS Macro Letters, 2015, 4, pp 1017–1021.

  • Updated:
  • Published:
Share
URL copied!

Read more news

#65 in the world in business & economics THE World University Rankings 2026 by Subject on a yellow background.
Research & Art Published:

Business & economics and computer science ranked in top 100 globally

The Times Higher Education ranking measures universities with 18 indicators, including international research and citations
Unite! Seed Fund 2026 announcement with a small plant sprouting from soil. Call now open for student activities, teaching, and research.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Open for applications

The 2026 Unite! Seed Fund call is officially open, offering funding across three strategic lines: Student Activities, Teaching and Learning, and Research and PhD. Deadline for applications is 20 March 2026.
Text: Unite! Seed Fund for Students 2026. Call now open. Image: Seedling growing from soil.
Cooperation, Research & Art, Studies, University Published:

Apply now: Unite! Seed Fund 2026 - Student Call

The Unite! Seed Fund call for 2026 is now open for students. Apply now for up to €20,000 per project, involving at least two Unite! Universities. Deadline for applications is 20 March 2026.

Research & Art Published:

Create your CV easily with the Research.fi profile tool

Aalto University’s researchers can now create a CV using the CV tool in the Research tool service. The tool generates an editable Word CV based on your Research.fi profile information, following the official TENK CV template.