News

Is battery recycling environmentally friendly?

Researchers conduct life-cycle assessment to determine the actual carbon footprint of battery recycling
Battery recycling_photo Valeria Azovskaya
With new solution-based recycling processes, more raw materials can be recovered from batteries. In the picture, a red cobalt salt and a blue-green nickel salt have been obtained from a battery cell. Photo: Valeria Azovskaya / Aalto University.

The EU will be home to 30 million electric cars by 2030 and the European Commission is preparing tough targets for recycling these and other batteries. Yet the impacts of battery recycling, especially for the sizeable lithium-ion batteries of the electric cars soon filling our streets, has been largely unstudied.

In a new study, researchers at Aalto University have investigated the environmental effects of a hydrometallurgical recycling process for electric car batteries. Using simulation-based life-cycle analysis, they considered energy and water consumption, as well as process emissions.

‘Battery recycling processes are still developing, so their environmental footprints haven’t yet been studied in detail. To be beneficial, recycling must be proven to be more ecological than producing raw materials – we can’t just assume recycling is automatically better, even though we know mining the raw materials has large environmental impacts, like high energy and water consumption,’ says Mari Lundström, Assistant Professor at Aalto University.

Battery recycling often uses smelting, which typically loses lithium and other raw materials. Novel hydrometallurgical processes, which separate battery metals from waste by dissolution, enable the recovery of all metals but consume large amounts of energy and chemicals, and often produce contaminated wastewaters.

According to the study, the carbon footprint of the raw material obtained by the recycling process is 38% smaller than that of the virgin raw material. The difference is even greater if copper and aluminium recovered during mechanical pre-treatment are included. The results also point to problem areas.

‘Life-cycle analysis identifies the areas where recycling can be improved. For example, we noticed that using sodium hydroxide as a neutralizing chemical significantly increases the environmental load of our process,’ says Marja Rinne, a doctoral student at Aalto University.

This kind of analysis, which the researchers say has been rarely done for battery recycling, can also be done before new processes are taken into use. It is useful for determining how certain choices or process parameters affect the environmental impacts of a process, so it can be a beneficial decision-making tool for both industry and policymakers.

‘Simulation-based life-cycle analysis can be used even at the design stage of recycling processes to assess the environmental impacts and find the best possible options,’ says Lundström.

The potential benefits of finding the best recycling processes are substantial; the EU aims to recycle 70% of the mass battery waste by the end of the decade. It is also setting targets for specific metals used in batteries: 95% of cobalt, nickel and copper, and 70% of lithium must be recycled by 2030. It is estimated that the global lithium battery recycling market will be worth 19 billion by 2030.

According to Lundström, now is the time to develop alternative recycling methods, as the amount of battery waste will skyrocket with the rapid growth of electric cars.

‘We will have a massive need for recycling, and we have to find the most viable and ecological recycling processes. Research into technological innovations and their environmental impact go hand in hand,’ she says.

In the study, the team also assessed the industrial scalability of the process and made recommendations on how to best modify the process accordingly. 

M. Rinne, H. Elomaa, A. Porvali, M. Lundström, 2021. Simulation-based life cycle assessment for hydrometallurgical recycling of mixed LIB and NiMH waste, Resources, Conservation and Recycling, vol. 170, 105586, DOI: 10.1016/j.resconrec.2021.105586

More information

Mari Lundström
Professor
Phone: +358 40 4873 434
[email protected]

Marja Rinne
Doctoral student
[email protected]

 

  • Published:
  • Updated:
Share
URL copied!

Read more news

Outi Turpeinen standing on stage talking about Unfolding public art book to a seated audience facing her.
Campus, Research & Art, University Published:

Love and poetry - the artists were inspired by the passion conveyed by the university's research

Engineering Materials, an art collection for K1, K2, and K3 buildings, was published
Graphic illustration of materials science, AI and physics with equations, B&W photos and a photo of prof. Rinke.
Research & Art Published:

Prof. Patrick Rinke: making sustainable materials with AI

Professor Patrick Rinke’s pioneering expertise in finding sustainable and climate-friendly materials with machine learning methodology has arguably never been more in demand
The Ocean’s Curtain is inspired by the way the surface of water looks when viewed from the seabed. Kurotuksia - Higher Powers exhibition. Photo: Mikko Raskinen.
Press releases Published:

Kurotuksia - Higher Powers student exhibition blending math and arts opens at Heureka today

Aalto University's interdisciplinary course "Crystal Flowers in Mirror Rooms: Mathematics meets Art and Architecture" culminates in the exhibition Kurotuksia - Higher Powers, which opens today at Heureka, the Finnish Science Centre. It celebrates a decade of promoting interdisciplinary interaction in the course and is the second time the course has an exhibition at Heureka.
USA-Suomi-seminaari Otaniemessä
Cooperation Published:

Strengthening the collaboration in the bioproduct sector between Finland and the United States

At the end of May, a large American delegation visited Finland to familiarize themselves with our forest and wood sector expertise. FinnCERES, the materials bioeconomy Flagship led by Aalto University and VTT Technical Research Centre of Finland, is involved in developing new business opportunities through bio-based material innovations.