News

Improving rotating machinery with a digital twin

Collecting data from a fleet of installed products can improve condition monitoring and predictive maintenance services.
twinrotor_kuvituskuva700x400_en_en.jpg

Embedded sensors and actuators combined with modern networking, cloud, and machine learning technologies made it possible to collect and analyze massive amounts of data reflecting the use of industrial products. This data explosion provides obvious opportunities to optimize the operation of products and systems in terms of energy consumption, material usage, or quality control. Collecting data from a fleet of installed products can improve condition monitoring and predictive maintenance services as well as further value adding services. 

In the research project the behavior of rotating machinery will be improved using a digital twin coupled with Industrial Internet methods to support enhanced data flow between the machinery, simulation based virtual sensors, and applied big data analytics. This will lead to insights into how the rotating machinery design can be improved, in addition to better operational efficiency of the machinery and enhanced quality of the products manufactured with them. The wider scientific objective is to study how Industrial Internet methodologies coupled with machine learning can be applied especially to complex engineering design.

The project Digital Twin of Rotor System is funded by the Academy of Finland and lasts until the end of 2019. The project is conducted together with Lappeenranta University of Technology. 

Contact:
Aalto Industrial Internet Campus
Professor Petri Kuosmanen 
[email protected]

  • Published:
  • Updated:
Share
URL copied!

Related news

Smart City Challenge
Research & Art Published:

Four smart city pilot projects start in January 2021

Altogether 71 ideas were proposed to the international challenge for smart cities. 
ARTS open science roadshow, pic of the session
Research & Art Published:

European Open Science Cloud (EOSC) Finnish Forum webinar on 25th January

One of the speakers is Karel Luyben, the first president of the EOSC Association and a member of board at Aalto University.
Installation Talk 2020, Jarkko Niiranen
Research & Art Published:

Professor Jarkko Niiranen on the computational mechanics of microarchitectural solids and structures

'When developing models, we spend a lot of time on mathematical physics, numerical mathematics and computer programming, but the fundamental concepts of mechanics remain the same' says Niiranen in his installation talk.
A photo showing Dr. Dorothea Golze
Research & Art Published:

Computational physicist Dorothea Golze receives prestigious Emmy Noether Award

Dorothea Golze received funding from the German Research Foundation within the Emmy Noether Programme to establish her own junior research group at the Technical University of Dresden.