News

Holding an object requires smooth interaction between high and low brain frequencies

Researchers have identified a neuronal mechanism enabling people to maintain constant contraction force.

Holding a glass requires a high degree of precision in the force we apply with the hands. Although effortless, this task requires continuous adjustment of the force and finger position based on sensory information. The research team set out to better understand the neuronal mechanisms enabling us to achieve this demanding skilled task.

The researchers recorded magnetoencephalographic (MEG) brain activity from adult volunteers who pinched the handle of a device to record grip force. The analysis focused on the coupling of the brain activity with minor hand vibrations during the steady pinch.

The results showed that the brain regulates the grip force based on the low-frequency, below 3 Hz, content of sensory signals generated by proprioceptors in the hand. The proprioceptors are sensory organs that monitor the position of body parts.

 

Researchers recorded MEG signals from healthy volunteers (left) who pinched the handle of a device that monitored the contraction force (right). The results showed that the brain speaks to the muscles at 20 Hz (rightwards arrow) and listens to them at 3 Hz (leftwards arrow). Picture: Modified from Bourguignon et al. 2017.

The finding contradicts previous studies, which had contemplated the possibility that the brain would make use of signals at higher frequencies around 20 Hz. Indeed, 20 Hz is the dominant frequency of the oscillatory brain activity that arises from the sensorimotor cortex, the part of the brain that controls motor actions and monitors tactile and proprioceptive information. Moreover, the signals from the brain and the contracting muscle are coherent at 20 Hz.

“The research team now demonstrated that the brain speaks to the muscles and listens to them at different frequencies, at 20 Hz and at less than 3 Hz, respectively”, describes researcher Mathieu Bourguignon.

This study was carried out at the Department of Neuroscience and Biomedical Engineering of the Aalto University and was published in the Journal of Neuroscience. The lead author, Mathieu Bourguignon is currently working at the ULB Neuroscience Institute in Brussels.

Further information:

Mathieu Bourguignon
Researcher
Aalto University, ULB Neuroscience Institute in Brussels
[email protected]

Riitta Hari
Professor emerita
Aalto University
[email protected]

Article:  Mathieu Bourguignon, Harri Piitulainen, Eero Smeds, Guangyu Zhou, Veikko Jousmäki and Riitta Hari: MEG insight into the spectral dynamics underlying steady isometric muscle contraction. Journal of Neuroscience.

  • Published:
  • Updated:
Share
URL copied!

Related news

Portaikossa kuvattu mies katsoo kuvaajan ohi vasemmalle ja hymyilee
Research & Art Published:

Design is the mission of life for Eero Miettinen

Professor in industrial design has always loved drawing cars. Miettinen is delighted that the understanding of design has expanded in society.
Värikkäitä energiamateriaalien tekstuureja, kuva Helen Marton
Research & Art Published:

Funding for research infrastructures

Funding received from the Academy of Finland strengthens the prerequisites for research in bioeconomy, quantum technologies and geophysical phenomena.
Paula Hohti Photo by Astrid Mannerkoski
Research & Art Published:

Paula Hohti Erichsen follows the trail of 500-year-old fashion

This professor of art and culture istory appreciates joy and comfort and experienced the finest moment of her career during a funding interview.
two men shaking hands
Honoured, Research & Art Published:

Metex Prize to Ville Piippo

The thesis, in the field of design, focuses on driving ergonomics and sustainable design of an electric motorbike.