Graphene nanoribbons - chiral or not?
We show that the precursor geometry controls whether we form regular armchair or chiral graphene nanoribbons (GNRs). On Cu(111), bianthryl precursors (dibromo-, dichloro-, or halogen-free bianthryl) unexpectedly yield chiral GNRs. Using atomically resolved noncontact atomic force microscopy (nc-AFM), we studied the growth mechanism in detail. In contrast to the nonplanar BA-derived precursors, planar dibromoperylene (DBP) molecules do form armchair GNRs by Ullmann coupling on Cu(111), as they do on Au(111). These results highlight the role of the substrate, precursor shape, and molecule–molecule interactions as decisive factors in determining the reaction pathway. Our findings establish a new design paradigm for molecular precursors and opens a route to the realization of previously unattainable covalently bonded nanostructures.
The results are published in the Journal of Physical Chemistry C
Read more news
Apply Now: Unite! Visiting Professorships at TU Graz
TU Graz, Austria, invites experienced postdoctoral researchers to apply for two fully funded visiting professorships. The deadline for expressions of interest is 20 February 2026, and the positions will begin on 1 October 2026.Soil Laboratory Exhibition – Exploring the Dialogue Between Human and the Earth in Utsjoki
Soil Laboratory explores the relationship between humans and the earth as a living landscape through ceramic practices in Utsjoki.
The Finnish Cultural Foundation awarded grants for science and art
A total of 15 individuals or groups from Aalto University received grants