News

Five-year ERC funding to develop the next generation of carbon-based white OLED lights

Postdoctoral Researcher Konstantinos Daskalakis aims to make OLED lighting cheaper, brighter and more efficient
Photo: Mikko Raskinen.
Photo: Mikko Raskinen.

Lighting consumes one-fifth of the world's electrical energy and it produces a total of 400 million tonnes of carbon dioxide emissions per year. This means that lighting accounts for 1.2% of all emissions.

Efforts to make lighting more efficient have led to the development of light-emitting diodes (LEDs) that emit intense light when a small amount of electric current passes through them. LED lights are made of highly pure, crystalline inorganic semiconductors which consume a lot of energy to make.

‘LED lights are effective to use. The problems with LED lights are related to the adverse environmental effects following the production and use of the materials. On the contrary, the manufacture of the organic or carbon-based white OLED (WOLED) lights is more environmentally friendly, compared with traditional LED lights. However, current WOLED technologies still use rare earth and toxic heavy metal traces. I plan to develop truly ecological and easy-to-manufacture WOLEDs that can be also safely disposed of after use’, says Postdoctoral Researcher Konstantinos Daskalakis, who has just received EUR 1.5 million in funding for his project from the European Research Council (ERC). The project will run for five years.

Organic LEDs (OLEDs) work on the same principle as LEDs but are made of carbon-based semiconductors. They are already used in television and phone screens. The new devices being developed for the project are called WOLED lights when made to emit bright white light and used in lighting.

Existing WOLED light solutions are costly and inefficient. Expensive and non-renewable rare earth and toxic heavy metal traces are often used, and the manufacturing processes are difficult.

‘It is important to significantly reduce the price of WOLED lights while doubling their lighting efficiency and life cycle. Our innovation is based on quantum mechanics and photonics, and, in particular, the polariton states, which are hybrid states combining both the properties of material and light.’

The polariton states give new properties in materials allowing them to be manipulated with light so that the same material radiates and absorbs several colours in a controlled manner. In other words, polariton states could be used to modify a single material to emit multiple colours that are perceptible to the human eye as white colour.

‘We can create polariton states by encapsulating our OLED materials within nanometer spaced mirrors that help to trap light in the microscale. In this structure, light is emitted and absorbed simultaneously, making polaritons being indistinguishable from “just matter” or “just light”. In other words, we can control polaritons to emit light of many colours by carefully designing this microstructure.’

‘My core competence areas are photonics and light-emitting materials, and I use my expertise to address the challenges of WOLED lights. Through experimental research, I aim to demonstrate that polariton states enable the transition from traditional LED lights to affordable, efficient, stable, and bright OLED lights which emit white light.’

Further information:

European Research Council

Jaana Vapaavuori (left) and Konstantinos Daskalakis (right)

EU grants for smart materials and next generation LEDs

Three million euros grants to Assistant Professor Jaana Vapaavuori and Postdoctoral Researcher Konstantinos Daskalakis to make environmentally friendly materials

News
  • Published:
  • Updated:

Read more news

 Shankar Deka is an Assistant Professor at the Department of Electrical Engineering and Automation.
Research & Art Published:

Robotics needs safe behavior patterns

Robotics and autonomous systems are developing rapidly. Algorithms that withstand disturbances and uncertainties in the system model and environment are critical for development.
Tissue Culture Spinner, a machine with many test tubes attached.
Research & Art Published:

A new way to do controlled experiments in medicine: simulate the control

Generative AI could augment randomized controlled trials.
Otaniemi seafront pictured in the summer with the Aalto logo and event title, and VTT and Open Science logos overlayed.
Campus, Cooperation, Research & Art Published:

Open Science and Research Summer Conference 2024 will be hosted by Aalto University

Open Science and Research Summer Conference 2024 will be held at Aalto University’s Otaniemi campus and in Zoom 3.–4.6.2024. Please register by May 3.
Two men dressed in dark clothes sit in the middle of furniture they have designed
Research & Art, Studies Published:

Designs created by aaltonians on display at the Milan furniture fair

An Italian designer and a Japanese architect are presenting their collaboration, inspired by the Finnish culture, at the "Salone del Mobile" in Milan in April. Other design projects from Aalto are on display at the INTERDEPENDENCE exhibition.