Engineered metasurfaces reflect waves in unusual directions

Developed at Aalto University, new metasurfaces can reflect light or sound waves into any desired direction or even split energy into more than one direction
Aalto University / Metasurface / photo: Sergei Tretyakov

In our day lives, we can find many examples of manipulation of reflected waves such as mirrors to see our reflections or reflective surfaces for sound that improve auditorium acoustics. When a wave impinges on a reflective surface with a certain angle of incidence and the energy is sent back, the angle of reflection is equal to the angle of incidence. This classical reflection law is valid for any homogenous surface. Researchers at Aalto University have developed new metasurfaces for the arbitrary manipulation of reflected waves, essentially breaking the law to engineer the reflection of a surface at will.

Metasurfaces are artificial structures, composed of periodic arranged of meta-atoms at subwavelength scale. Meta-atoms are made of traditional materials but, if they are placed in a periodic manner, the surface can show many unusual effects that cannot be realized by the materials in nature. In their article published 15 February 2019 in Science Advances, the researchers use power-flow conformal metasurfaces to engineer the direction of reflected waves.

Aalto University / Schematic representation of the functionality implemented with the metasurface /  Ana Diaz-Rubio
New metasurfaces can reflect light or sound waves into any desired direction.

‘Existing solutions for controlling reflection of waves have low efficiency or difficult implementation,’ says Ana Díaz-Rubio, postdoctoral researcher at Aalto University. ‘We solved both of those problems. Not only did we figure out a way to design high efficient metasurfaces, we can also adapt the design for different functionalities. These metasurfaces are a versatile platform for arbitrary control of reflection.’

‘This is really an exciting result. We have figured out a way to design such a device and we test it for controlling sound waves. Moreover, this idea can be applied to electromagnetic fields,’ Ana explains.

This work received funding from the Academy of Finland. The article was published in the online version of the journal on 15 February 2019.



  • Published:
  • Updated:
URL copied!

Related news

Jäteveden käsittely
Press releases, Research & Art Published:

Turning wastewater nutrients into fertiliser

The NPHarvest process allows for the recovery of nitrogen and phosphorus from wastewater.
Droplet of honey in a superhydrophobic tube
Press releases Published:

When honey flows faster than water

Physicists surprised to find that in specially coated tubes, the more viscous a liquid is, the faster it flows
Aalto-yliopiston alumni Ulla Heikkilä on ohjannut ja käsikirjoittanut lyhytelokuvan Let her speak. Se on osa Yksittäistapaus-elokuvasarjaa, joka tuo esiin naisiin kohdistuvaa näkymätöntä vallankäyttöä niin yksityiselämässä kuin yhteiskunnassa. Kuvassa näyttelijä Iida-MariaHeinonen. Kuva: JohannaOnnismaa/TuffiFilms2019
Press releases Published:

Two new surveys confirm: gender exclusion is still common in the Finnish audiovisual industry

Employment is hindered by lack of networks. Women are also faced with gender-specific negative assessment in funding and production negotiations.
Aallossa kehitetty kolmiulotteinen malli, jossa aurinkotuulen vaikutuksesta Venuksesta pakenevat hapen ionit on kuvattu punaisilla pisteillä
Press releases Published:

BepiColombo, en route to Mercury, flew by Venus – simulation shows clouds of particles escaping from the planet

Researchers at Aalto University have been involved in building the equipment on board the probe, which are used in studying phenomena such as space weather on Venus and Mercury.