News

Electromagnetic model of the brain allows us to see inside the human head

Professor Ilkka Laakso is a pioneer in his field. The electromagnetic modelling of the brain, which began in Japan is now continuing.
ilkka_laakso_www_en.jpg

On 1 September 2015, Ilkka Laakso DSc (Tech) was appointed an Assistant Professor  at the Department of Electrical Engineering and Automation. His professorship is in the field of Electrical Engineering.

Mr Laakso has developed a uniquely accurate model on how electric currents caused by electromagnetic fields travel in the human brain. His objective is the more effective treatment of neurological conditions. There is no need to search for scope of application.

'Six per cent of Europe's gross domestic product i.e. an estimated 800 billion euros a year is used for the treatment of conditions affecting the brain. If the method I have developed could improve the treatment and diagnosis methods of these conditions even a little bit the economic effect alone would be a massive one,' Laakso says.

Modelling begins with an MRI of the researched individual's head. The system developed by Mr Laakso creates a personalised 3D model of the head based on magnetic images. This model can then be used for example for the calculation and localisation of electric currents induced though brain stimulation. This is essential in targeting treatment.

'Up until now, research has been carried out from outside the body, i.e with electrodes attached to the head or magnetic stimulation of the brain. Both induce electric currents, but the specific routes of those currents are yet unknown. The model I developed allows us to see inside the human head.

Participants need to be present at Japanese meetings

The new professor wants to challenge his students with difficult exercises as part of his teaching work. No matter how theoretical the topic, they must search for methods that will make it tangible. 

Mr Laakso completed his dissertation at Aalto University in 2011. Already in his dissertation, Mr Laakso modelled electromagnetic fields in biological tissue and examined whether these were safe for the human body. This work continued in Japan at the Nagoya Institute of Technology (NIT), which is a world leader in the study of the safety and health effects of electromagnetic fields. At NIT, Mr Laakso initiated the electromagnetic modelling of the brain and made this an important area of research in Nagoya. Before returning to Aalto University, Mr Laakso worked in Japan for four and a half years.

How different was the Japanese research community in comparison to the Finnish one?

'In Japan, it is more common to do things together. In addition to team work, people often go out to eat with their team and hold welcome parties for new members. In Japan, face-to-face meetings surpass video conferences. It is also common that participants are attentive at meetings. They do not spend time fiddling with their computers or mobile phones.'

Mr Laakso also expanded his linguistic skills, and is now proficient in Japanese. There is one thing however in Finland that is a must, and that is his summer cottage. In fact, a desire to spend time at his summer cottage was one of the reasons for Mr Laakso's return to Finland.

Photo: Lasse Lecklin

  • Published:
  • Updated:
Share
URL copied!

Read more news

Kerrostalo ja kallioita
Cooperation, Press releases, Research & Art Published:

The SUBURBAN PRIDE project examines the relationship between mental images of suburbs and the built environment

The multidisciplinary project combines history of architecture, sociology, and research in critical cultural heritage and landscape architecture. The purpose of the project, based on research and workshops, is to build a sustainable future for suburbs.
Aalto-yliopiston kauppakorkeakoulu. Kuva: Mika Huisman
Research & Art Published:

School of Business is getting more high-quality international applications for professorships

Our excellent rankings reveal the high quality of our research work.
Henrika Yliriskun väitös taidekasvatuksen alalta tarkastettiin Aalto-yliopistossa maaliskuussa 2021.
Research & Art, Studies Published:

‘Environmental art education should address the problem of human-centeredness’

‘I claim’ series presents our researchers and the results of their work. Henrika Ylirisku researches the premises of environmental art education.
InteraktiiQuantum Garden on interaktiivinen elektroninen valotaideteos, jota koskettamalla teoksen värit muuttuvat. Tummasävyisessä kuvassa kaksi kättä kurkottaa eriväristen valoantureiden päälle.
Aalto Magazine, Research & Art Published:

Quantum literacy for all

What do computers, cell phones and GPS navigation have in common? And what about digital cameras, solar panels and fibre optics? The answer is that the functioning of these devices is based on quantum phenomena.