News

Designer materials with completely random structures might enable quantum computing

Topological randomness may be the answer for lossless electronics and making the nuts and bolts of quantum computers.
Designer materials and quantum randomness

 

Randomly sprinkled magnetic atoms (red arrows) on a superconducting surface may give rise to a topological superconducting phase. Inset: The onset of the topological phase is signaled by the appearance of so-called Majorana edge mode encircling the system. Image: Teemu Ojanen.

Designing quantum materials with exotic and unprecedented electrical properties has the field of physics teeming with buzz. Researchers at Aalto University in Finland have now introduced a significant turn in this discussion by developing an amorphous material which exhibits topological superconductivity. Until this point, these materials have required highly regular structures to show desired electrical properties.

The findings, published in Nature Communications, bring the field one step closer to application. Topological superconductors and insulators are considered to be possible building blocks of lossless components for quantum computers. While topological superconductors might not exist in nature, they can be fabricated, as the study demonstrates.

‘We have presented a method of fabricating topological materials in amorphous systems with randomly placed constituents. This means we can achieve superconductivity in the material by sprinkling magnetic atoms on a superconducting surface completely at random, not in highly-defined and ornamented lattices, for example,’ explains doctoral student Kim Pöyhönen.

The recent boom on topological superconductors stems mainly from an unconventional quantum-level phenomenon, a collective movement of many individual particles called Majorana fermion excitations. They have been envisioned as critical ingredients of topological quantum computers.

‘Getting highly irregular, random systems to work as topological superconductors will potentially make their fabrication and manufacture much more convenient compared to current methods,’ says research group leader, Docent Teemu Ojanen.

Perhaps for now, the implications of the random quantum material verge only on fundamental research, but that might not be the case for much longer.

‘For topological quantum matter to find its way to actual applications, it’s imperative we find even more new candidates for amorphous topological materials,’ states Ojanen.

Research article

Further information:

Teemu Ojanen, Docent
Theory of Quantum Matter group
Department of Applied Physics
Aalto University
[email protected]
tel. +358 40 510 5406

  • Published:
  • Updated:
Share
URL copied!

Related news

maankäyttö
Press releases, Research & Art Published:

Feeding the world without wrecking the planet is possible

Almost half of current food production is harmful to our planet – causing biodiversity loss, ecosystem degradation and water stress. But as world population continues to grow, can that last?
Graafinen kuva kuvaa niitä viittä tapaa, joilla yrittäjät viestivät yrityksensä lopettamispäätöksestä.
Press releases Published:

Triumph, embrace or offset? Entrepreneurs have different storytelling styles for presenting business closure

New pioneering research shows that entrepreneurs communicate to strengthen their professional image and stakeholder relationships - and avoid blaming others.
An illustration showing a nano-strip of copper being bombarded by photons, with a thermometer measuring its heat
Press releases Published:

How sensitive can your quantum detector be?

A new device measures the tiniest energies in superconducting circuits, an essential step for quantum technology
A solar panel printed in the shape of the aalto 10th birthday party logo
Press releases Published:

Low cost solar panel research receives funding boost

€600,000 funding awarded to Dr Ghufran Hashmi for the development of low cost long-lasting solar energy materials