News

Crab-shell and seaweed compounds spin into yarns for sustainable and functional materials

Biobased fibres are made from two renewable marine resources and with promise in advanced applications, in wovens and medical materials, among others. The threads draw strength from the crab chitin component and flexibility from seaweed alginate.
Ravunkuorista ja merilevästä tehtyä lankaa
When the chitin (pink) and the alginate (light blue) are brought into contact, the alginate begins to wrap around the chitin particles and forms filaments that are aligned when pulled up. Photo: Rafael Grande

Researchers from Aalto University, the University of São Paulo and the University of British Columbia have found a way to make a new kind of fibre from a combination of chitin nanoparticles, extracted from residual blue crab shells and alginate, a compound found in seaweed. This new bio-based material is sturdy and has antimicrobial properties.

The team studied how differences in the concentration of each component, the size of the nanoparticles, and other variables affect the mechanical properties and spinnability of the final thread. With this information, the researchers were able to produce strong, flexible threads continuously.

Professor Orlando Rojas from the Biobased Colloids and Materials (BiCMat) team at Aalto University, says that the researchers wanted to make a fibre that combined the properties of chitin – known for its antimicrobial properties – and seaweed alginate, which forms strong gels, ’The designed material, took advantage of the strong interaction between the components, which are oppositely charged. We found that when a solution of alginate contacts a suspension of chitin nanofibers, the alginate wraps around the chitin nanoparticles, forming fibrils that align in parallel as the thread is drawn upward’.

Alginate dissolves readily in water. Brown algae have alginic acid in its cell walls, which can be converted to sodium alginate. The blue crab shells were ground and purified; then the material was partially deacetylated using simple procedures.

The research team sees great potential for the material to be used for such things as threads for surgical procedures and webs for internal tissue engineering. Other uses include pads and web-like meshes for applications on the skin, for wound healing, skin conditioning and burn treatments. ‘It’s a well-known fact that that chitin nanoparticles are antimicrobial and bioactive, for example, they have shown to help hair growth’ Rojas adds.

Rojas says that for further development, the research team is looking into scaleability after demonstrating that the threads can be formed continuously, ‘This can be eventually made scalable by using simultaneous microfiber dry-drawing from the respective suspensions’.

More information:

Professor Orlando Rojas
Aalto University & FinnCERES Materials Bioeconomy Flagship
p. 050 512 4227
[email protected]

Post-doctoral researcher Rafael Grande
Aalto University
[email protected]

Link to the paper (ACS Sustainable Chem. Eng)

  • Published:
  • Updated:

Read more news

Event information on a yellow to coral gradient background with yellow bubbles and a photo of a colorful event space.
Awards and Recognition, Campus, Research & Art Published:

Join us for the first Aalto Open Science Award Ceremony

All Aaltonians are welcome – no registration required!
Image from the conferment ceremony
Cooperation, Research & Art, University Published:

Doctoral education pilot arouses wide interest among applicants and corporate partners

The doctoral education pilot has got off to a fast start.
A man stands against a white background.
Awards and Recognition Published:

Broadband miniaturized spectrometer research receives QTF annual discovery award 2024

The clarity and compelling presentation of the research were one of the reasons why Doctoral Researcher Md Uddin earned the prize for the research paper, which was published in Nature Communications.
 Shankar Deka is an Assistant Professor at the Department of Electrical Engineering and Automation.
Research & Art Published:

Robotics needs safe behavior patterns

Robotics and autonomous systems are developing rapidly. Algorithms that withstand disturbances and uncertainties in the system model and environment are critical for development.