News

Colors from darkness: Researchers develop alternative approach to quantum computing

Microwaves created at near absolute zero temperature provide uniquely correlated and controllable states.
Artistic depiction of the generation of three correlated photons from quantum vacuum. Image Antti Paraoanu.

Researchers at Aalto University have demonstrated the suitability of microwave signals in the coding of information for quantum computing. Previous development of the field has been focusing on optical systems.

Researchers used a microwave resonator based on extremely sensitive measurement devices known as superconductive quantum interference devices (SQUIDs). In their studies, the resonator was cooled down and kept near absolute zero, where any thermal motion freezes. This state corresponds to perfect darkness where no photon – a real particle of electromagnetic radiation such as visible light or microwaves – is present.

However, in this state (called quantum vacuum) there exist fluctuations that bring photons in and out of existence for a very short time. The researchers have now managed to convert these fluctuations into real photons of microwave radiation with different frequencies, showing that, in a sense, darkness is more than just absence of light.

They also found out that these photons are correlated with each other, as if a magic connection exists between them.

‘With our experimental setup we managed to create complex correlations of microwave signals in a controlled way,’ says Dr Pasi Lähteenmäki, who performed the research during his doctoral studies at the Low Temperature Laboratory of Aalto University.

‘This all hints at the possibility of using the different frequencies for quantum computing. The photons at different frequencies will play a similar role to the registers in classical computers, and logical gate operations can be performed between them,’ says Doc. Sorin Paraoanu, Senior University Lecturer and one of the co-authors of the work.

The results provide a new approach for quantum computing.

‘Today the basic architecture of future quantum computers is being developed very intensively around the world. By utilizing the multi-frequency microwave signals, an alternative approach can be pursued which realizes the logical gates by sequences of quantum measurements. Moreover, if we use the photons created in our resonator, the physical quantum bits or qubits become needless,’ explains Professor Pertti Hakonen from the Low Temperature Laboratory of Aalto University.

These experiments utilized the OtaNANO infrastructure and the niobium superconducting technology of the Technical Research Centre of Finland (VTT). This work was done under the framework of the Centre of Quantum Engineering at Aalto University.

Research article:
Pasi Lähteenmäki, Gheorghe Sorin Paraoanu, Juha Hassel, and Pertti J. Hakonen.
Coherence and correlations from vacuum fluctuations in a microwave superconducting cavity.
Nature Communications 7 (2016). http://dx.doi.org/10.1038/ncomms12548

Contact information:
Professor Pertti Hakonen
[email protected]
+358 50 3442 316

Docent Sorin Paraoanu
[email protected]
+358 50 3442 650

NANO-group: http://physics.aalto.fi/nano/
KVANTTI-group: http://physics.aalto.fi/kvantti/
Centre of Excellence in Quantum Phenomena and Devices: http://ltq.aalto.fi/

  • Published:
  • Updated:
Share
URL copied!

Read more news

Utuinen ihmishahmo näyttää kävelevän pois päin, varjo heijastuu vaalealle pinnalle
Research & Art, Studies, University Published:

Master's students' exhibition at the Finnish Museum of Photography

The MoA in Photography 23 exhibition by the Master's students of the Department of Photography is on display until 12 March.
Nainen rannalla tuulisella säällä hymyilee, taustalla meri kuohuaa
Appointments, Research & Art Published:

Professor Ranja Hautamäki: ‘Diverse urban nature is key to increasing well-being and carbon sinks’

Professor of Landscape Architecture is tackling the issues of climate change mitigation and urban carbon sinks.
NASAn Curiosity-mönkijä kuvaama pölypyörre Marsin Gale-kraatterissa. Kuvankäsittely: Henrik Kahanpää. Alkuperäinen kuva: NASA / JPL-Caltech
Research & Art, Studies Published:

On Mars the weather varies dramatically, however the planet’s climate is not changing

The doctoral dissertation of Henrik Kahanpää also questions a prevailing perception related to dust devils on Mars. As a researcher, he hopes that humans would never go to Mars.
A portrait of Laureen Mahler.
Research & Art Published:

Laureen Mahler uses origami folding to create bio-based packaging that is also pleasant to look at

Many products of the packaging industry are made of plastic and other fossil-based materials. The Aalto University Bioinnovation Center is developing ecological packaging solutions based on origami folding which also have value as beautiful objects.