News

Challenges for mass-production of flexible solar cells: durability and environmental impact

A key to durable and environmentally friendly cells lies in the encapsulation.
Flexible dye solar cell prepared on metal and polymer substrates. Image: Janne Halme.

If scientists’ dreams came true, everyday items such as mobile devices, clothing and vehicles would be equipped with flexible solar cells. A recent review article by researchers of Aalto University and University of Montreal reports on recent developments in the commercialisation and mass production of flexible dye solar cells as well as highlights remaining challenges. The applicability for large-scale mass production, encapsulation of the cells, their durability, and their environmental net impact are among key issues discussed.

A key requirement for flexible solar cell technologies to be viable at industrial scale is that all components of the cells should lend themselves to roll-to-roll production. Recent development of, for instance, ink-jet printing is promising in this respect as it allows precise insertion of the dye and electrolyte components.

The encapsulation of a flexible cell poses a major challenge to manufacture. If encapsulation is insufficient, the liquid electrolyte can leak out of the cell or let impurities leak inside, which could considerably reduce the lifetime of the device. New innovations are required for joining the substrates together, since conventional approaches, such as glass-frit used in rigid devices, are unsuitable for flexible cells.

‘A prerequisite for commercialization is making the lifetime of devices adequate. Flexible solar cells are usually made on metals or plastics, and both come with perils: a metal may corrode, and plastics may allow water and other impurities to permeate,’ explains Academy Research Fellow Kati Miettunen from Aalto University in Finland.

A future goal is the development of more stable options for flexible substrates, that would preferably come with a cheaper price and lesser environmental impact. New discoveries using biomaterials or a hybrid material with wood pulp as substrates for the cells could pave the way forward.

Further information:

Kati Miettunen
Academy Research Fellow, Project Manager
Aalto University
[email protected]
tel. +358 50 3441729      

  • Published:
  • Updated:
Share
URL copied!

Related news

Research & Art Published:

EIT Climate-KIC supported Ioncell directly offers an innovation that regenerates fibres, while enabling them to be recyclable and biodegradable.

Ioncell, conceptualised out of Aalto University, provides a closed-loop technology to regenerate cellulosic fibres without using harmful chemicals.
media lab demo day
Research & Art Published:

Xmas Demo Day 2019 in photos

Collection of photos from the latest Demo Day organized on the 5th of December 2019.
arkkitehdit Philip Tidwell, Kristo Vesikansa ja Laura Berger seisovat katsoen kameraan
Appointments, Cooperation, Research & Art Published:

Finland’s exhibition in the Biennale Architettura 2020 honors the Finnish prefabricated wooden houses of the WWII era

The exhibition will be conceived and curated by three researchers and teachers at Aalto University.
Quantum Garden
Research & Art Published:

Making understanding quantum computers easier

IBM collaborates with Professor Sabrina Maniscalco and her group to develop new transformative tools for teaching and outreach about quantum technologies