News

Challenges for mass-production of flexible solar cells: durability and environmental impact

A key to durable and environmentally friendly cells lies in the encapsulation.
Flexible dye solar cell prepared on metal and polymer substrates. Image: Janne Halme.

If scientists’ dreams came true, everyday items such as mobile devices, clothing and vehicles would be equipped with flexible solar cells. A recent review article by researchers of Aalto University and University of Montreal reports on recent developments in the commercialisation and mass production of flexible dye solar cells as well as highlights remaining challenges. The applicability for large-scale mass production, encapsulation of the cells, their durability, and their environmental net impact are among key issues discussed.

A key requirement for flexible solar cell technologies to be viable at industrial scale is that all components of the cells should lend themselves to roll-to-roll production. Recent development of, for instance, ink-jet printing is promising in this respect as it allows precise insertion of the dye and electrolyte components.

The encapsulation of a flexible cell poses a major challenge to manufacture. If encapsulation is insufficient, the liquid electrolyte can leak out of the cell or let impurities leak inside, which could considerably reduce the lifetime of the device. New innovations are required for joining the substrates together, since conventional approaches, such as glass-frit used in rigid devices, are unsuitable for flexible cells.

‘A prerequisite for commercialization is making the lifetime of devices adequate. Flexible solar cells are usually made on metals or plastics, and both come with perils: a metal may corrode, and plastics may allow water and other impurities to permeate,’ explains Academy Research Fellow Kati Miettunen from Aalto University in Finland.

A future goal is the development of more stable options for flexible substrates, that would preferably come with a cheaper price and lesser environmental impact. New discoveries using biomaterials or a hybrid material with wood pulp as substrates for the cells could pave the way forward.

Further information:

Kati Miettunen
Academy Research Fellow, Project Manager
Aalto University
[email protected]
tel. +358 50 3441729      

  • Published:
  • Updated:

Read more news

Vidha Saumya's artwork with grotesque human figures
Research & Art Published:

Aalto ARTS alum Vidha Samya’s artwork featured at the Venice Biennale 2024

The Pavilion of Finland presents ‘The pleasures we choose’ at the 60th International Art Exhibition – La Biennale di Venezia until 24 November 2024.
Metallikuutio, jota kädet koskettaa
Research & Art Published:

IoT Forge donates EUR 1 million to the School of Engineering

The donation will be used for research and education on the Industrial Internet and digital twins.
Event information on a yellow to coral gradient background with yellow bubbles and a photo of a colorful event space.
Awards and Recognition, Campus, Research & Art Published:

Join us for the first Aalto Open Science Award Ceremony

All Aaltonians are welcome – no registration required!
A man with glasses looks at the camera, with summer nature in the background
Research & Art, University Published:

Donor story - Yrjö Sotamaa: ‘Supporting the university is about building our own future’

Professor Emeritus is still an active design influencer both at home and internationally. He is now also a monthly donor to School of Arts, Design and Architecture.