Challenges for mass-production of flexible solar cells: durability and environmental impact

A key to durable and environmentally friendly cells lies in the encapsulation.
Flexible dye solar cell prepared on metal and polymer substrates. Image: Janne Halme.

If scientists’ dreams came true, everyday items such as mobile devices, clothing and vehicles would be equipped with flexible solar cells. A recent review article by researchers of Aalto University and University of Montreal reports on recent developments in the commercialisation and mass production of flexible dye solar cells as well as highlights remaining challenges. The applicability for large-scale mass production, encapsulation of the cells, their durability, and their environmental net impact are among key issues discussed.

A key requirement for flexible solar cell technologies to be viable at industrial scale is that all components of the cells should lend themselves to roll-to-roll production. Recent development of, for instance, ink-jet printing is promising in this respect as it allows precise insertion of the dye and electrolyte components.

The encapsulation of a flexible cell poses a major challenge to manufacture. If encapsulation is insufficient, the liquid electrolyte can leak out of the cell or let impurities leak inside, which could considerably reduce the lifetime of the device. New innovations are required for joining the substrates together, since conventional approaches, such as glass-frit used in rigid devices, are unsuitable for flexible cells.

‘A prerequisite for commercialization is making the lifetime of devices adequate. Flexible solar cells are usually made on metals or plastics, and both come with perils: a metal may corrode, and plastics may allow water and other impurities to permeate,’ explains Academy Research Fellow Kati Miettunen from Aalto University in Finland.

A future goal is the development of more stable options for flexible substrates, that would preferably come with a cheaper price and lesser environmental impact. New discoveries using biomaterials or a hybrid material with wood pulp as substrates for the cells could pave the way forward.

Further information:

Kati Miettunen
Academy Research Fellow, Project Manager
Aalto University
[email protected]
tel. +358 50 3441729      

Related news

Kuva: Tuomas Uusheimo.
Research & Art Published:

EURO2022 conference to be hosted by Aalto University

Largest European conference in operations research and management science to be hosted in Otaniemi in July 2022
Falling Walls
Research & Art Published:

Win a trip to Berlin with ideas pitching competition

Falling Walls Lab Finland submission period closes soon, enter your research or business idea to be in a chance to compete in the international final
Matias Palva. Kuva: Mikko Raskinen.
Research & Art Published:

Matias Palva, Professor of Brain Signal Analytics, studies the mechanisms of the human mind and brain diseases

Understanding the brain mechanisms behind the diseases is important when developing targeted treatments
Nanocellulose bicycle Photo: Eeva Suorlahti
Cooperation, Press releases, Research & Art Published:

Tomorrow's Sustainable Lifestyles Showcased in Otaniemi

One of Helsinki Design Week's main events, Designs for a Cooler Planet, will showcase Aalto University's cross-cutting future prototypes, such as a nanocellulose bicycle, microbial headphones and Ioncell clothes
  • Published:
  • Updated:
Share
URL copied!